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Bit rot
The term "bit rot" is often used to refer to dormant 
code rot, i.e. the fact that dormant (unused or little-
used) code gradually decays in correctness as a 
result of interface changes in active code that is 
called from the dormant code.	


!
- http://en.wikipedia.org/wiki/Bit_rot

”
“

http://en.wikipedia.org/wiki/Bit_rot




… or how to create
maintainable software



I happen to hold a hard-won 
minority opinion about code 
bases. In particular I believe, 
quite staunchly I might add, 	


that the worst thing that can 
happen to a code base is size.	


!

– Steve Yegge”
“
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๏ Example: Akka

๏ Code & Maintenance

๏ How our minds fight bit rot

๏ Tools

๏ Pro tips

๏ Summary



�6

Build powerful,	


concurrent & distributed 
applications more easily.

”
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๏ Number of modules: 19

๏ First Commit: Feb 2009

๏ Total Commits:  13,450

๏ Total contributors: 135

๏ Est. effort: 36 years (COCOMO)

๏ Mostly written in Scala

http://www.ohloh.net/p/akka

Akka stats

http://www.ohloh.net/p/akka
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๏ Total lines: 203,515

๏ Code lines: 142,894

๏ Percent Code Lines 70.2%

๏ Number of Languages: 11

๏ Total Comment Lines: 36,416

๏ Percent Comment Lines: 17.9%

๏ Total Blank Lines: 24,205

๏ Percent Blank Lines: 11.9%

Akka stats



#1 top Github pull award





If debugging is the 
process of removing 
bugs, then 
programming must 
be the process of 
putting them in.	



– Edsger Dijkstra 

“
”
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Maintenance

๏ Corrective

๏ Preventive

๏ Adaptive – evolve with new surroundings

๏ Perfective – evolve to meet new needs 



[…] a good programmer can reasonably 

maintain about 20,000 lines of code. 	


!
[…] language doesn't matter. It's still 
20,000 lines. 	


!
If your language requires fewer lines to 
express the same ideas, you can spend 
more time on stuff that otherwise 
would go beyond those 20,000 lines.	


!

– Guido van Rossum 	


Creator of the Python Programming Language ”

“



So … how do you fight bit 
rot with your mind?



http://en.wikipedia.org/wiki/Broken_windows_theory

http://en.wikipedia.org/wiki/Broken_windows_theory


Zero Known Defects 
Policy



My point today is that, if we 
wish to count lines of code, 
we should not regard them 
as "lines produced" but as 
"lines spent": 	


!
the current conventional 
wisdom is so foolish as to 
book that count on the 
wrong side of the ledger.	



– Edsger Dijkstra 

“
”



Lines of Code Spent€



Less is more!
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๏ Feature – must have
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Laws

๏ DRY

๏ Boy Scout Rule

๏ Test

๏ Document
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Everyone code reviews

๏ Collective Ownership

๏ Harmonization

๏ Education

๏ Documentation

๏ Test Coverage
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Documentation

๏ Reference documentation

๏ API documentation

๏ Put “Whys” in the code



Solve everything  
at least twice



@author



git blame / praise
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Rules

๏ Code formatting

๏ Tabs vs spaces

๏ Features

๏ Commits

๏ Description

๏ Message
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Auto-enforce

๏ Reformat on save / compile

๏ Post-commit hooks



Features

๏ What features do we use when and why?



Common Dev Tools



Common Dev Tools

๏ Issue tracker



Common Dev Tools

๏ Issue tracker

๏ Code reviewer



Common Dev Tools

๏ Issue tracker

๏ Code reviewer

๏ Continuous Integration



Common Dev Tools

๏ Issue tracker

๏ Code reviewer

๏ Continuous Integration

๏ Build tool



Common Dev Tools

๏ Issue tracker

๏ Code reviewer

๏ Continuous Integration

๏ Build tool

๏ Source Control



Common Dev Tools

๏ Issue tracker

๏ Code reviewer

๏ Continuous Integration

๏ Build tool

๏ Source Control

๏ Documentation Generator
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Issue tracking

๏ Absolute priority ordering

๏ Break down into half-day size

๏ Follow motivation when choosing
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Source Related
๏ Code review tool

๏ Use the one that works best

๏ Continuous Integration tool

๏ Use the one that works best

๏ Build tool

๏ Use the one that works best

๏ Source Control

๏ Use Git and be done with it!
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Continuous Integration

๏ Run CI on Pull Requests before merge

๏ Run CI continuously on main branches
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Documentation Generator

๏ All code samples should be tests that are 
compiled and run and automagically lifted in

๏ Documentation generation should be a part of 
CI so if it fails, it fails the build

๏ Generate at least HTML + PDF



Individual Tools



Editors/IDEs

๏ Build tool will enforce code style so       

use the editor you are 
most productive in!
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HW Interfaces
๏ Don't change keyboards/layouts to write 

faster

๏ Do it to avoid strain on your fingers and 
wrists

            10: Pain leads to shortcuts

            20: Shortcuts lead to bugs

            30: Bugfixing means typing

      40: goto 10



#define Protips
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Dependencies
๏ Have a cost associated with using them

๏ License management

๏ Repository and / or package size

๏ Transitive dependencies

๏ Version conflicts

๏ You cannot abstract away understanding 

  — only delegate responsibility
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Planned interfaces

๏ Design and document your public API

๏ Don't make things API by accident

๏ Public API needs to have proper 
documentation

๏ Good API design takes a lot of effort

๏ But is worth it!
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Avoid defaults in code

๏ Put defaults in external configuration

๏ Possible to change without recompiling

๏ Makes structure of the code cleaner

๏ Avoids scattering same "default" in multiple 
places (DRY)
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Avoid shared mutable state

๏ Consequences of shared mutable state:

๏ Interactions are hard to calculate

๏ Almost always assumes single-threaded 
execution

๏ Hard to reason and verify impact of 
changes
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public int mutable() {

  int x = 1;

  int y = 2;

  int z = 3;

  …

  return x + y + z;

}

All the possibilities!

public int immutable() {

  final int x = 1;

  final int y = 2;

  final int z = 3;

  …

  return x + y + z;

}
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Immutable

๏ Things that do not change frees the mind 
from calculating the interactions

๏ Use const / final whenever possible

๏ Favor immutability in collections and data

๏ Persistent collections can be very efficient



Expressions > Statements



Expressions > Statements

๏ Statements do not "return" anything



Expressions > Statements

๏ Statements do not "return" anything

๏ They can only produce results by 
writing to shared memory



Expressions > Statements

๏ Statements do not "return" anything

๏ They can only produce results by 
writing to shared memory

๏ This leads to having a lot of 
variables



Expressions > Statements

๏ Statements do not "return" anything

๏ They can only produce results by 
writing to shared memory

๏ This leads to having a lot of 
variables

๏ Remember what we said about 
immutability
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public int foo() {

  int x;
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  …
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public
  int
  if
    x = 5;

  } 
    x = 10;

  }

  …

  return
}

public
  int
  if
  else
  …

  return
}

public int foo() {

  final int x =

    smth ? 5 : 10;

  …

  return result;

}

Expressions > Statements
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Versioning

๏ Very few enjoy designing versioning

๏ Very few enjoy evolving an unversioned system

๏ Guess which one of these usually lasts longer

v1 … v5
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//
Bad comments

๏ Comments also rot

๏ Never commit commented out code. 
If it isn't worth compiling, it's not 

worth maintaining.
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Don't Copy Paste

๏ Copy-paste violates DRY

๏ Use Cut-paste

๏ If you Cut-paste-paste-*

๏ Stop it
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Failures will occur

๏ Fault tolerance impacts system design

๏ Think about failures up front

๏ Avoid mixing concerns in code

๏ Overload is a type of failure

๏ How should the system behave?



Pride in work
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∑-ary
๏ Creating successful "bit rot" resistant 

software boils down to:

๏ Culture

๏ Process

๏ Practices

๏ And last but not least:

๏Continuously improving them



Time is the fire	


in which we burn	



– Delmore Schwarz  “
”
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