
√Fighting
Bit rot

With your mind
Viktor Klang

Director of Engineering

Bit rot
The term "bit rot" is often used to refer to dormant
code rot, i.e. the fact that dormant (unused or little-
used) code gradually decays in correctness as a
result of interface changes in active code that is
called from the dormant code.	

!
- http://en.wikipedia.org/wiki/Bit_rot

”
“

http://en.wikipedia.org/wiki/Bit_rot

… or how to create
maintainable software

I happen to hold a hard-won
minority opinion about code
bases. In particular I believe,
quite staunchly I might add, 	

that the worst thing that can
happen to a code base is size.	

!

– Steve Yegge”
“

Outline

Outline

๏ Example: Akka

Outline

๏ Example: Akka

๏ Code & Maintenance

Outline

๏ Example: Akka

๏ Code & Maintenance

๏ How our minds fight bit rot

Outline

๏ Example: Akka

๏ Code & Maintenance

๏ How our minds fight bit rot

๏ Tools

Outline

๏ Example: Akka

๏ Code & Maintenance

๏ How our minds fight bit rot

๏ Tools

๏ Pro tips

Outline

๏ Example: Akka

๏ Code & Maintenance

๏ How our minds fight bit rot

๏ Tools

๏ Pro tips

๏ Summary

�6

Build powerful,	

concurrent & distributed
applications more easily.

”
“

Akka stats

๏ Number of modules: 19

Akka stats

๏ Number of modules: 19

๏ First Commit: Feb 2009

Akka stats

๏ Number of modules: 19

๏ First Commit: Feb 2009

๏ Total Commits: 13,450

Akka stats

๏ Number of modules: 19

๏ First Commit: Feb 2009

๏ Total Commits: 13,450

๏ Total contributors: 135

Akka stats

๏ Number of modules: 19

๏ First Commit: Feb 2009

๏ Total Commits: 13,450

๏ Total contributors: 135

๏ Est. effort: 36 years (COCOMO)

Akka stats

๏ Number of modules: 19

๏ First Commit: Feb 2009

๏ Total Commits: 13,450

๏ Total contributors: 135

๏ Est. effort: 36 years (COCOMO)

๏ Mostly written in Scala

http://www.ohloh.net/p/akka

Akka stats

http://www.ohloh.net/p/akka

Akka stats

๏ Total lines: 203,515

Akka stats

๏ Total lines: 203,515

๏ Code lines: 142,894

Akka stats

๏ Total lines: 203,515

๏ Code lines: 142,894

๏ Percent Code Lines 70.2%

Akka stats

๏ Total lines: 203,515

๏ Code lines: 142,894

๏ Percent Code Lines 70.2%

๏ Number of Languages: 11

Akka stats

๏ Total lines: 203,515

๏ Code lines: 142,894

๏ Percent Code Lines 70.2%

๏ Number of Languages: 11

๏ Total Comment Lines: 36,416

Akka stats

๏ Total lines: 203,515

๏ Code lines: 142,894

๏ Percent Code Lines 70.2%

๏ Number of Languages: 11

๏ Total Comment Lines: 36,416

๏ Percent Comment Lines: 17.9%

Akka stats

๏ Total lines: 203,515

๏ Code lines: 142,894

๏ Percent Code Lines 70.2%

๏ Number of Languages: 11

๏ Total Comment Lines: 36,416

๏ Percent Comment Lines: 17.9%

๏ Total Blank Lines: 24,205

Akka stats

๏ Total lines: 203,515

๏ Code lines: 142,894

๏ Percent Code Lines 70.2%

๏ Number of Languages: 11

๏ Total Comment Lines: 36,416

๏ Percent Comment Lines: 17.9%

๏ Total Blank Lines: 24,205

๏ Percent Blank Lines: 11.9%

Akka stats

#1 top Github pull award

If debugging is the
process of removing
bugs, then
programming must
be the process of
putting them in.	

– Edsger Dijkstra 

“
”

Maintenance

Maintenance

๏ Adaptive – evolve with new surroundings

Maintenance

๏ Adaptive – evolve with new surroundings

๏ Perfective – evolve to meet new needs

Maintenance

๏ Corrective – diagnose and fix defects

๏ Adaptive – evolve with new surroundings

๏ Perfective – evolve to meet new needs

Maintenance

๏ Corrective – diagnose and fix defects

๏ Preventive – refactor etc

๏ Adaptive – evolve with new surroundings

๏ Perfective – evolve to meet new needs

Maintenance

๏ Corrective

๏ Preventive

๏ Adaptive – evolve with new surroundings

๏ Perfective – evolve to meet new needs

[…] a good programmer can reasonably

maintain about 20,000 lines of code. 	

!
[…] language doesn't matter. It's still
20,000 lines. 	

!
If your language requires fewer lines to
express the same ideas, you can spend
more time on stuff that otherwise
would go beyond those 20,000 lines.	

!

– Guido van Rossum 	

Creator of the Python Programming Language ”

“

So … how do you fight bit
rot with your mind?

http://en.wikipedia.org/wiki/Broken_windows_theory

http://en.wikipedia.org/wiki/Broken_windows_theory

Zero Known Defects
Policy

My point today is that, if we
wish to count lines of code,
we should not regard them
as "lines produced" but as
"lines spent": 	

!
the current conventional
wisdom is so foolish as to
book that count on the
wrong side of the ledger.	

– Edsger Dijkstra 

“
”

Lines of Code Spent€

Less is more!

(My) Test philosophy

(My) Test philosophy

๏ Feature – must have

(My) Test philosophy

๏ Feature – must have

๏ Integration – should have

(My) Test philosophy

๏ Feature – must have

๏ Integration – should have

๏ Unit – may have

Laws

Laws

๏ DRY

Laws

๏ DRY

๏ Boy Scout Rule

Laws

๏ DRY

๏ Boy Scout Rule

๏ Test

Laws

๏ DRY

๏ Boy Scout Rule

๏ Test

๏ Document

Everyone code reviews

Everyone code reviews

๏ Collective Ownership

Everyone code reviews

๏ Collective Ownership

๏ Harmonization

Everyone code reviews

๏ Collective Ownership

๏ Harmonization

๏ Education

Everyone code reviews

๏ Collective Ownership

๏ Harmonization

๏ Education

๏ Documentation

Everyone code reviews

๏ Collective Ownership

๏ Harmonization

๏ Education

๏ Documentation

๏ Test Coverage

Documentation

Documentation

๏ Reference documentation

Documentation

๏ Reference documentation

๏ API documentation

Documentation

๏ Reference documentation

๏ API documentation

๏ Put “Whys” in the code

Solve everything
at least twice

@author

git blame / praise

Rules

Rules

๏ Code formatting

Rules

๏ Code formatting

๏ Tabs vs spaces

Rules

๏ Code formatting

๏ Tabs vs spaces

๏ Features

Rules

๏ Code formatting

๏ Tabs vs spaces

๏ Features

๏ Commits

Rules

๏ Code formatting

๏ Tabs vs spaces

๏ Features

๏ Commits

๏ Description

Rules

๏ Code formatting

๏ Tabs vs spaces

๏ Features

๏ Commits

๏ Description

๏ Message

Auto-enforce

Auto-enforce

๏ Reformat on save / compile

Auto-enforce

๏ Reformat on save / compile

๏ Post-commit hooks

Features

๏ What features do we use when and why?

Common Dev Tools

Common Dev Tools

๏ Issue tracker

Common Dev Tools

๏ Issue tracker

๏ Code reviewer

Common Dev Tools

๏ Issue tracker

๏ Code reviewer

๏ Continuous Integration

Common Dev Tools

๏ Issue tracker

๏ Code reviewer

๏ Continuous Integration

๏ Build tool

Common Dev Tools

๏ Issue tracker

๏ Code reviewer

๏ Continuous Integration

๏ Build tool

๏ Source Control

Common Dev Tools

๏ Issue tracker

๏ Code reviewer

๏ Continuous Integration

๏ Build tool

๏ Source Control

๏ Documentation Generator

Issue tracking

Issue tracking

๏ Absolute priority ordering

Issue tracking

๏ Absolute priority ordering

๏ Break down into half-day size

Issue tracking

๏ Absolute priority ordering

๏ Break down into half-day size

๏ Follow motivation when choosing

Source Related

Source Related
๏ Code review tool

Source Related
๏ Code review tool

๏ Use the one that works best

Source Related
๏ Code review tool

๏ Use the one that works best

๏ Continuous Integration tool

Source Related
๏ Code review tool

๏ Use the one that works best

๏ Continuous Integration tool

๏ Use the one that works best

Source Related
๏ Code review tool

๏ Use the one that works best

๏ Continuous Integration tool

๏ Use the one that works best

๏ Build tool

Source Related
๏ Code review tool

๏ Use the one that works best

๏ Continuous Integration tool

๏ Use the one that works best

๏ Build tool

๏ Use the one that works best

Source Related
๏ Code review tool

๏ Use the one that works best

๏ Continuous Integration tool

๏ Use the one that works best

๏ Build tool

๏ Use the one that works best

๏ Source Control

Source Related
๏ Code review tool

๏ Use the one that works best

๏ Continuous Integration tool

๏ Use the one that works best

๏ Build tool

๏ Use the one that works best

๏ Source Control

๏ Use Git and be done with it!

Continuous Integration

Continuous Integration

๏ Run CI on Pull Requests before merge

Continuous Integration

๏ Run CI on Pull Requests before merge

๏ Run CI continuously on main branches

Documentation Generator

Documentation Generator

๏ All code samples should be tests that are
compiled and run and automagically lifted in

Documentation Generator

๏ All code samples should be tests that are
compiled and run and automagically lifted in

๏ Documentation generation should be a part of
CI so if it fails, it fails the build

Documentation Generator

๏ All code samples should be tests that are
compiled and run and automagically lifted in

๏ Documentation generation should be a part of
CI so if it fails, it fails the build

๏ Generate at least HTML + PDF

Individual Tools

Editors/IDEs

๏ Build tool will enforce code style so

use the editor you are
most productive in!

HW Interfaces

HW Interfaces
๏ Don't change keyboards/layouts to write

faster

HW Interfaces
๏ Don't change keyboards/layouts to write

faster

๏ Do it to avoid strain on your fingers and
wrists

HW Interfaces
๏ Don't change keyboards/layouts to write

faster

๏ Do it to avoid strain on your fingers and
wrists

 10: Pain leads to shortcuts

HW Interfaces
๏ Don't change keyboards/layouts to write

faster

๏ Do it to avoid strain on your fingers and
wrists

 10: Pain leads to shortcuts

 20: Shortcuts lead to bugs

HW Interfaces
๏ Don't change keyboards/layouts to write

faster

๏ Do it to avoid strain on your fingers and
wrists

 10: Pain leads to shortcuts

 20: Shortcuts lead to bugs

 30: Bugfixing means typing

HW Interfaces
๏ Don't change keyboards/layouts to write

faster

๏ Do it to avoid strain on your fingers and
wrists

 10: Pain leads to shortcuts

 20: Shortcuts lead to bugs

 30: Bugfixing means typing

 40: goto 10

#define Protips

Dependencies

Dependencies
๏ Have a cost associated with using them

Dependencies
๏ Have a cost associated with using them

๏ License management

Dependencies
๏ Have a cost associated with using them

๏ License management

๏ Repository and / or package size

Dependencies
๏ Have a cost associated with using them

๏ License management

๏ Repository and / or package size

๏ Transitive dependencies

Dependencies
๏ Have a cost associated with using them

๏ License management

๏ Repository and / or package size

๏ Transitive dependencies

๏ Version conflicts

Dependencies
๏ Have a cost associated with using them

๏ License management

๏ Repository and / or package size

๏ Transitive dependencies

๏ Version conflicts

๏ You cannot abstract away understanding

Dependencies
๏ Have a cost associated with using them

๏ License management

๏ Repository and / or package size

๏ Transitive dependencies

๏ Version conflicts

๏ You cannot abstract away understanding

 — only delegate responsibility

Planned interfaces

Planned interfaces

๏ Design and document your public API

Planned interfaces

๏ Design and document your public API

๏ Don't make things API by accident

Planned interfaces

๏ Design and document your public API

๏ Don't make things API by accident

๏ Public API needs to have proper
documentation

Planned interfaces

๏ Design and document your public API

๏ Don't make things API by accident

๏ Public API needs to have proper
documentation

๏ Good API design takes a lot of effort

Planned interfaces

๏ Design and document your public API

๏ Don't make things API by accident

๏ Public API needs to have proper
documentation

๏ Good API design takes a lot of effort

๏ But is worth it!

Avoid defaults in code

Avoid defaults in code

๏ Put defaults in external configuration

Avoid defaults in code

๏ Put defaults in external configuration

๏ Possible to change without recompiling

Avoid defaults in code

๏ Put defaults in external configuration

๏ Possible to change without recompiling

๏ Makes structure of the code cleaner

Avoid defaults in code

๏ Put defaults in external configuration

๏ Possible to change without recompiling

๏ Makes structure of the code cleaner

๏ Avoids scattering same "default" in multiple
places (DRY)

Avoid shared mutable state

Avoid shared mutable state

๏ Consequences of shared mutable state:

Avoid shared mutable state

๏ Consequences of shared mutable state:

๏ Interactions are hard to calculate

Avoid shared mutable state

๏ Consequences of shared mutable state:

๏ Interactions are hard to calculate

๏ Almost always assumes single-threaded
execution

Avoid shared mutable state

๏ Consequences of shared mutable state:

๏ Interactions are hard to calculate

๏ Almost always assumes single-threaded
execution

๏ Hard to reason and verify impact of
changes

All the possibilities!

public int mutable() {

 int x = 1;

 int y = 2;

 int z = 3;

 …

 return x + y + z;

}

All the possibilities!

public int mutable() {

 int x = 1;

 int y = 2;

 int z = 3;

 …

 return x + y + z;

}

All the possibilities!

public int immutable() {

 final int x = 1;

 final int y = 2;

 final int z = 3;

 …

 return x + y + z;

}

Immutable

Immutable

๏ Things that do not change frees the mind
from calculating the interactions

Immutable

๏ Things that do not change frees the mind
from calculating the interactions

๏ Use const / final whenever possible

Immutable

๏ Things that do not change frees the mind
from calculating the interactions

๏ Use const / final whenever possible

๏ Favor immutability in collections and data

Immutable

๏ Things that do not change frees the mind
from calculating the interactions

๏ Use const / final whenever possible

๏ Favor immutability in collections and data

๏ Persistent collections can be very efficient

Expressions > Statements

Expressions > Statements

๏ Statements do not "return" anything

Expressions > Statements

๏ Statements do not "return" anything

๏ They can only produce results by
writing to shared memory

Expressions > Statements

๏ Statements do not "return" anything

๏ They can only produce results by
writing to shared memory

๏ This leads to having a lot of
variables

Expressions > Statements

๏ Statements do not "return" anything

๏ They can only produce results by
writing to shared memory

๏ This leads to having a lot of
variables

๏ Remember what we said about
immutability

Expressions > Statements

public int foo() {

 int x;

 if (smth) {

 x = 5;

 } else {

 x = 10;

 }

 …

 return result;

}

Expressions > Statements

public
 int
 if
 x = 5;

 }
 x = 10;

 }

 …

 return
}

public int foo() {

 int x;

 if (smth) x = 5;

 else x = 10;

 …

 return result;

}

Expressions > Statements

public
 int
 if
 x = 5;

 }
 x = 10;

 }

 …

 return
}

public
 int
 if
 else
 …

 return
}

public int foo() {

 final int x =

 smth ? 5 : 10;

 …

 return result;

}

Expressions > Statements

Versioningv1 … v5

Versioning

๏ Very few enjoy designing versioning

v1 … v5

Versioning

๏ Very few enjoy designing versioning

๏ Very few enjoy evolving an unversioned system

v1 … v5

Versioning

๏ Very few enjoy designing versioning

๏ Very few enjoy evolving an unversioned system

๏ Guess which one of these usually lasts longer

v1 … v5

//
Bad comments

//
Bad comments

๏ Comments also rot

//
Bad comments

๏ Comments also rot

๏ Never commit commented out code.
If it isn't worth compiling, it's not

worth maintaining.

Don't Copy Paste

Don't Copy Paste

๏ Copy-paste violates DRY

Don't Copy Paste

๏ Copy-paste violates DRY

๏ Use Cut-paste

Don't Copy Paste

๏ Copy-paste violates DRY

๏ Use Cut-paste

๏ If you Cut-paste-paste-*

Don't Copy Paste

๏ Copy-paste violates DRY

๏ Use Cut-paste

๏ If you Cut-paste-paste-*

๏ Stop it

Failures will occur

Failures will occur

๏ Fault tolerance impacts system design

Failures will occur

๏ Fault tolerance impacts system design

๏ Think about failures up front

Failures will occur

๏ Fault tolerance impacts system design

๏ Think about failures up front

๏ Avoid mixing concerns in code

Failures will occur

๏ Fault tolerance impacts system design

๏ Think about failures up front

๏ Avoid mixing concerns in code

๏ Overload is a type of failure

Failures will occur

๏ Fault tolerance impacts system design

๏ Think about failures up front

๏ Avoid mixing concerns in code

๏ Overload is a type of failure

๏ How should the system behave?

Pride in work

∑-ary

∑-ary
๏ Creating successful "bit rot" resistant

software boils down to:

∑-ary
๏ Creating successful "bit rot" resistant

software boils down to:

๏ Culture

∑-ary
๏ Creating successful "bit rot" resistant

software boils down to:

๏ Culture

๏ Process

∑-ary
๏ Creating successful "bit rot" resistant

software boils down to:

๏ Culture

๏ Process

๏ Practices

∑-ary
๏ Creating successful "bit rot" resistant

software boils down to:

๏ Culture

๏ Process

๏ Practices

๏ And last but not least:

∑-ary
๏ Creating successful "bit rot" resistant

software boils down to:

๏ Culture

๏ Process

๏ Practices

๏ And last but not least:

๏Continuously improving them

Time is the fire	

in which we burn	

– Delmore Schwarz  “
”

E0F

