
Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

What’s Ahead
for Big Data?

CodeMesh 2013, December 4
dean.wampler@typesafe.com
@deanwampler
polyglotprogramming.com/talks

Wednesday, December 4, 13

Copyright © Dean Wampler, 2011-2013, All Rights Reserved. Photos can only be used with
permission. Otherwise, the content is free to use.
Photo: John Hancock Center, Michigan Ave. Chicago, Illinois USA

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved
Dean Wampler...

Consultant at
Typesafe

Wednesday, December 4, 13

Typesafe builds tools for creating Reactive Applications, http://typesafe.com/platform. See
also the Reactive Manifesto, http://www.reactivemanifesto.org/

Photo: The Chicago River

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved
Dean Wampler...

Founder,
Chicago-Area Scala

Enthusiasts
and co-organizer,

Chicago Hadoop User Group

Wednesday, December 4, 13

I’ve been doing Scala for 6 years and Big Data for 3.5 years.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved
Dean Wampler...

Dean Wampler,
 Jason Rutherglen &

 Edward Capriolo

Hive
Programming

Dean Wampler

Functional
Programming

for Java Developers

Wednesday, December 4, 13

My books…

http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/9780596155964.do
http://shop.oreilly.com/product/9780596155964.do

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved5

What Is Big Data?

Wednesday, December 4, 13

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Big Data
Data so big that

tradiLonal soluLons are
too slow, too small, or
too expensive to use.

6

Hat tip: Bob Korbus

Wednesday, December 4, 13

It’s a buzz word, but generally associated with the problem of data sets too big to manage
with traditional SQL databases. A parallel development has been the NoSQL movement that is
good at handling semistructured data, scaling, etc.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

3 Trends

Wednesday, December 4, 13
Three prevailing trends driving data-centric computing.
Photo: Prizker Pavilion, Millenium Park, Chicago (designed by Frank Gehry)

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved8

Data Size ⬆

Wednesday, December 4, 13
Data volumes are obviously growing… rapidly.
Facebook now has over 600PB (Petabytes) of data in Hadoop clusters!

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved9

Formal Schemas ⬇

Wednesday, December 4, 13
There is less emphasis on “formal” schemas and domain models, i.e., both relational models of data and OO models, because data schemas and
sources change rapidly, and we need to integrate so many disparate sources of data. So, using relatively-agnostic software, e.g., collections of
things where the software is more agnostic about the structure of the data and the domain, tends to be faster to develop, test, and deploy. Put
another way, we find it more useful to build somewhat agnostic applications and drive their behavior through data...

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved10

Data-­‐Driven Programs ⬆

Wednesday, December 4, 13
This is the 2nd generation “Stanley”, the most successful self-driving car ever built (by a Google-Stanford) team. Machine learning is growing in
importance. Here, generic algorithms and data structures are trained to represent the “world” using data, rather than encoding a model of the
world in the software itself. It’s another example of generic algorithms that produce the desired behavior by being application agnostic and data
driven, rather than hard-coding a model of the world. (In practice, however, a balance is struck between completely agnostic apps and some
engineering towards for the specific problem, as you might expect...)

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved11

Probabilistic
Models vs.
Formal
Grammars

tor.com/blogs/...

Wednesday, December 4, 13
An interesting manifestation of this trend is the public argument between Noam Chomsky and Peter Norvig on the nature of language. Chomsky
long ago proposed a hierarchical model of formal language grammars. Peter Norvig is a proponent of probabilistic models of language. Indeed all
successful automated language processing systems are probabilistic.
http://www.tor.com/blogs/2011/06/norvig-vs-chomsky-and-the-fight-for-the-future-of-ai

http://www.tor.com/blogs/2011/06/norvig-vs-chomsky-and-the-fight-for-the-future-of-ai
http://www.tor.com/blogs/2011/06/norvig-vs-chomsky-and-the-fight-for-the-future-of-ai

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Big Data
Architectures

Wednesday, December 4, 13
What should software architectures look like for these kinds of systems?
Photo: Cloud Gate (a.k.a. “The Bean”) in Millenium Park, Chicago, on a cloudy day.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved13

Object Model

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2 Object-

Relational
Mapping

Other, Object-
Oriented

Domain Logic

Database

Query

SQL

Result Set

Objects

1

2

3

4

Wednesday, December 4, 13
Traditionally, we’ve kept a rich, in-memory domain model requiring an ORM to convert persistent data into the model. This is resource overhead and complexity we can’t afford in big data
systems. Rather, we should treat the result set as it is, a particular kind of collection, do the minimal transformation required to exploit our collections libraries and classes representing some
domain concepts (e.g., Address, StockOption, etc.), then write functional code to implement business logic (or drive emergent behavior with machine learning algorithms…)

The toJSON methods are there because we often convert these object graphs back into fundamental structures, such as the maps and arrays of JSON so we can send them to the browser!

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved14

Object Model

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2 Object-

Relational
Mapping

Other, Object-
Oriented

Domain Logic

Database

Query

SQL

Result Set

Objects

1

2

3

4

Relational/
Functional

Domain Logic

Database

Query

SQL

Result Set

1

2

Functional
Wrapper for

Relational Data

3

Functional
Abstractions

Wednesday, December 4, 13
But the traditional systems are a poor fit for this new world: 1) they add too much overhead in computation (the ORM layer, etc.) and memory (to store the objects). Most of what we do with
data is mathematical transformation, so we’re far more productive (and runtime efficient) if we embrace fundamental data structures used throughout (lists, sets, maps, trees) and build rich
transformations into those libraries, transformations that are composable to implement business logic.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved15

Relational/
Functional

Domain Logic

Database

Query

SQL

Result Set

1

2

Functional
Wrapper for

Relational Data

3

Functional
Abstractions

• Focus on:

• Lists

• Maps

• Sets

• Trees

• ...

Wednesday, December 4, 13
But the traditional systems are a poor fit for this new world: 1) they add too much overhead in computation (the ORM layer, etc.) and memory (to store the objects). Most of what we do with
data is mathematical transformation, so we’re far more productive (and runtime efficient) if we embrace fundamental data structures used throughout (lists, sets, maps, trees) and build rich
transformations into those libraries, transformations that are composable to implement business logic.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved16

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2

Web Client 1 Web Client 2 Web Client 3

FilesDatabase

Wednesday, December 4, 13
In a broader view, object models tend to push us towards centralized, complex systems that don’t decompose well and stifle reuse and optimal deployment scenarios. FP code makes it
easier to write smaller, focused services that we compose and deploy as appropriate.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved17

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2

Web Client 1 Web Client 2 Web Client 3

FilesDatabase

Web Client 1 Web Client 2 Web Client 3

Process 1 Process 2 Process 3

FilesDatabase

Wednesday, December 4, 13
In a broader view, object models tend to push us towards centralized, complex systems that don’t decompose well and stifle reuse and optimal deployment scenarios. FP code makes it
easier to write smaller, focused services that we compose and deploy as appropriate. Each “ProcessN” could be a parallel copy of another process, for horizontal, “shared-nothing”
scalability, or some of these processes could be other services…
Smaller, focused services scale better, especially horizontally. They also don’t encapsulate more business logic than is required, and this (informal) architecture is also suitable for scaling
ML and related algorithms.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved18

• Data Size ⬆

• Formal
Schema ⬇

• Data-Driven
Programs ⬆

Web Client 1 Web Client 2 Web Client 3

Process 1 Process 2 Process 3

FilesDatabase

Wednesday, December 4, 13
And this structure better fits the trends I outlined at the beginning of the talk.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved19

• MapReduce

• Distributed FS

Web Client 1 Web Client 2 Web Client 3

Process 1 Process 2 Process 3

FilesDatabase

Wednesday, December 4, 13
And MapReduce + a distributed file system, like Hadoop’s MapReduce and HDFS, fit this model.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved20

• Node.js?

• JSON database?

Web Client 1 Web Client 2 Web Client 3

Process 1 Process 2 Process 3

FilesDatabase

• JSON

Wednesday, December 4, 13
One interesting incarnation of this is JavaScript through the full stack, with JSON as the RPC format, stored directly (more or less) in a database like Mongo, CouchBase, and RethinkDB.
Node gives you JS in the mid-tier, and JSON is obviously a browser tool.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

What Is
MapReduce?

Wednesday, December 4, 13
Cloud Gate - “The Bean” - in Millenium Park, Chicago, on a sunny day - with some of my relatives ;)

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Hadoop is the dominant
Big Data plaUorm

today.

22

Wednesday, December 4, 13

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

A Hadoop Cluster

23

Hadoop v1.X Cluster

node

DiskDiskDiskDiskDisk

TaskTracker
DataNode

node

DiskDiskDiskDiskDisk

TaskTracker
DataNode

node

DiskDiskDiskDiskDisk

TaskTracker
DataNode

master
JobTracker
NameNode

backup master
Secondary
NameNodeNFS

Disk

Wednesday, December 4, 13
A Hadoop v1.X cluster. (V2.X introduces changes in the master processes, including support for high-availability and federation…). In brief:
JobTracker (JT): Master of submitted MapReduce jobs. Decomposes job into tasks (each a JVM process), often run where the “blocks” of input files
are located, to minimize net IO.
NameNode (NN): HDFS (Hadoop Distributed File System) master. Knows all the metadata, like block locations. Writes updates to a shared NFS disk
(in V1) for use by the Secondary NameNode.
Secondary NameNode (SNN): periodically merges in-memory HDFS metadata with update log on NFS disk to form new metadata image used when
booting the NN and SNN.
TaskTracker: manages each task given to it by the JT.
DataNode: manages the actual blocks it has on the node.
Disks: By default, Hadoop just works with “a bunch of disks” - cheaper and sometimes faster than RAID. Blocks are replicated 3x (default) so most
HW failures don’t result in data loss.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

MapReduce in Hadoop

Let’s look at a
MapReduce algorithm:

Inverted Index.

Used for text/web search.

24

Wednesday, December 4, 13
Let’s walk through a simple version of computing an inverted index. Imagine a web crawler has found all docs on the web and stored their URLs
and contents in HDFS. Now we’ll index it; build a map from each word to all the docs where it’s found, ordered by term frequency within the docs.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Crawl teh Interwebs

25

wikipedia.org/hadoop
Hadoop provides

MapReduce and HDFS

wikipedia.org/hbase

HBase stores data in HDFS

wikipedia.org/hive
Hive queries HDFS files and

HBase tables with SQL

...

...

Web Crawl

index
block

......

Hadoop provides...wikipedia.org/hadoop

......

block
......

HBase stores...wikipedia.org/hbase

......

block
......

Hive queries...wikipedia.org/hive

......

Map Task

Map Task

Map Task

Map Phase

So
rt,

 S
hu

ffl
e

Reduce Task

Reduce Task

Reduce Task

Reduce Task

Reduce Phase inverse index
block

hadoop (.../hadoop,1)

(.../hadoop,1),(.../hbase,1),(.../hive,1)hdfs

(.../hive,1)hive

(.../hbase,1),(.../hive,1)hbase

......

......

block
......

block
......

block
......

(.../hadoop,1),(.../hive,1)and

......

Wednesday, December 4, 13
Crawl pages, including Wikipedia. Use the URL as the document id in our first index, and the contents of each document (web page) as the second
“column”. in our data set.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Compute Inverse Index

26

wikipedia.org/hadoop
Hadoop provides

MapReduce and HDFS

wikipedia.org/hbase

HBase stores data in HDFS

wikipedia.org/hive
Hive queries HDFS files and

HBase tables with SQL

...

...

Web Crawl

index
block

......

Hadoop provides...wikipedia.org/hadoop

......

block
......

HBase stores...wikipedia.org/hbase

......

block
......

Hive queries...wikipedia.org/hive

......

Map Task

Map Task

Map Task

Map Phase

So
rt,

 S
hu

ffl
e

Reduce Task

Reduce Task

Reduce Task

Reduce Task

Reduce Phase inverse index
block

hadoop (.../hadoop,1)

(.../hadoop,1),(.../hbase,1),(.../hive,1)hdfs

(.../hive,1)hive

(.../hbase,1),(.../hive,1)hbase

......

......

block
......

block
......

block
......

(.../hadoop,1),(.../hive,1)and

......

Wednesday, December 4, 13
Now run a MapReduce job, where a separate Map task for each input block will be started. Each map tokenizes the content in to words, counts the
words, and outputs key-value pairs...

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

wikipedia.org/hadoop
Hadoop provides

MapReduce and HDFS

wikipedia.org/hbase

HBase stores data in HDFS

wikipedia.org/hive
Hive queries HDFS files and

HBase tables with SQL

...

...

Web Crawl

index
block

......

Hadoop provides...wikipedia.org/hadoop

......

block
......

HBase stores...wikipedia.org/hbase

......

block
......

Hive queries...wikipedia.org/hive

......

Map Task

Map Task

Map Task

Map Phase

So
rt,

 S
hu

ffl
e

Reduce Task

Reduce Task

Reduce Task

Reduce Task

Reduce Phase inverse index
block

hadoop (.../hadoop,1)

(.../hadoop,1),(.../hbase,1),(.../hive,1)hdfs

(.../hive,1)hive

(.../hbase,1),(.../hive,1)hbase

......

......

block
......

block
......

block
......

(.../hadoop,1),(.../hive,1)and

......

Compute Inverse Index

27

Key-values output
by first map task

Map Task

(hadoop,(wikipedia.org/hadoop,1))

(mapreduce,(wikipediate.org/hadoop, 1))

(hdfs,(wikipedia.org/hadoop, 1))

(provides,(wikipedia.org/hadoop,1))

(and,(wikipedia.org/hadoop,1))

Wednesday, December 4, 13
Now run a MapReduce job, where a separate Map task for each input block will be started. Each map tokenizes the content in to words, counts the
words, and outputs key-value pairs...
… Each key is a word that was found and the corresponding value is a tuple of the URL (or other document id) and the count of the words (or
alternatively, the frequency within the document). Shown are what the first map task would output (plus other k-v pairs) for the (fake) Wikipedia
“Hadoop” page. (Note that we convert to lower case…)

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Compute Inverse Index

28

wikipedia.org/hadoop
Hadoop provides

MapReduce and HDFS

wikipedia.org/hbase

HBase stores data in HDFS

wikipedia.org/hive
Hive queries HDFS files and

HBase tables with SQL

...

...

Web Crawl

index
block

......

Hadoop provides...wikipedia.org/hadoop

......

block
......

HBase stores...wikipedia.org/hbase

......

block
......

Hive queries...wikipedia.org/hive

......

Map Task

Map Task

Map Task

Map Phase

So
rt,

 S
hu

ffl
e

Reduce Task

Reduce Task

Reduce Task

Reduce Task

Reduce Phase inverse index
block

hadoop (.../hadoop,1)

(.../hadoop,1),(.../hbase,1),(.../hive,1)hdfs

(.../hive,1)hive

(.../hbase,1),(.../hive,1)hbase

......

......

block
......

block
......

block
......

(.../hadoop,1),(.../hive,1)and

......

Wednesday, December 4, 13
Finally, each reducer will get some range of the keys. There are ways to control this, but we’ll just assume that the first reducer got all keys starting
with “h” and the last reducer got all the “and” keys. The reducer outputs each word as a key and a list of tuples consisting of the URLs (or doc ids)
and the frequency/count of the word in that document, sorted by most frequent first. (All our docs have only one occurrence of any word, so the
sort is moot…)

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved29

Map Task

Map Task

Map Task

Map Phase

So
rt,

 S
hu

ffl
e

Reduce Task

Reduce Task

Reduce Task

Reduce Task

Reduce Phase

Map (or Flatmap):

• Transform one input to
0-N outputs.

Reduce:

• Collect multiple inputs
into one output.

Anatomy: MapReduce Job

Wednesday, December 4, 13
To recap, a true functional/mathematical “map” transforms one input to one output, but this is generalized in MapReduce to be one to 0-N. In
other words, it should be “FlatmapReduce”!! The output key-value pairs are distributed to reducers. The “reduce” collects together multiple inputs
with the same key into

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved30

Wednesday, December 4, 13

Quiz. Do you understand this tweet?

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

So, MapReduce is
a mashup of our friends
flatmap and reduce.

31

Wednesday, December 4, 13

Even in this somewhat primitive and coarse-grain framework, our functional data concepts are evident!

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Today,
Hadoop is our best,
general-­‐purpose tool
for horizontal scaling

of Big Data,
but...

32

Wednesday, December 4, 13

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

MapReduce and Its
Discontents

Wednesday, December 4, 13

Is MapReduce the end of the story? Does it meet all our needs? Let’s look at a few problems…
Photo: Gratuitous Romantic beach scene, Ohio St. Beach, Chicago, Feb. 2011.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

MapReduce doesn’t fit
all computaLon needs.
HDFS doesn’t fit all
storage needs.

34

Wednesday, December 4, 13

Let’s frame our discussion of where Big Data is going by contrasting needs and options with the current standard,
MapReduce and HDFS (Hadoop Distributed File System).

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

It’s hard to implement
many algorithms
in MapReduce.

35

Wednesday, December 4, 13

Even word count is not “obvious”. When you get to fancier stuff like joins, group-bys, etc., the
mapping from the algorithm to the implementation is not trivial at all. In fact, implementing
algorithms in MR is now a specialized body of knowledge.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved36

MapReduce is very
course-­‐grained.

1-­‐Map, 1-­‐Reduce
phase...

Wednesday, December 4, 13

Even word count is not “obvious”. When you get to fancier stuff like joins, group-bys, etc., the
mapping from the algorithm to the implementation is not trivial at all. In fact, implementing
algorithms in MR is now a specialized body of knowledge.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved37

MulLple MR jobs
required for some

algorithms.

Each one flushes its
results to disk!

Wednesday, December 4, 13

If you have to sequence MR jobs to implement an algorithm, ALL the data is flushed to disk
between jobs. There’s no in-memory caching of data, leading to huge IO overhead.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved38

MapReduce is designed
for offline, batch-­‐mode

analyLcs.

High latency; not
suitable for event

processing.
Wednesday, December 4, 13

Alternatives are emerging to provide event-stream (“real-time”) processing.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

The Hadoop Java API
is hard to use.

39

Wednesday, December 4, 13

The Hadoop Java API is even more verbose and tedious to use than it should be.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Let’s look at code for a
simpler algorithm,

Word Count.
(Tokenize as before, but

ignore original
document locaLons.)

40

Wednesday, December 4, 13

In Word Count, the mapper just outputs the word-count pairs. We forget about the document
URL/id. The reducer gets all word-count pairs for a word from all mappers and outputs each
word with its final, global count.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved41

import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import java.util.StringTokenizer;

class WCMapper extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 static final IntWritable one = new IntWritable(1);
 static final Text word = new Text; // Value will be set in a non-thread-safe way!

 @Override
 public void map(LongWritable key, Text valueDocContents,
 OutputCollector<Text, IntWritable> output, Reporter reporter) {
 String[] tokens = valueDocContents.toString.split("\\s+");
 for (String wordString: tokens) {
 if (wordString.length > 0) {
 word.set(wordString.toLowerCase);
 output.collect(word, one);
 }
 }
 }
}

class Reduce extends MapReduceBase
 implements Reducer[Text, IntWritable, Text, IntWritable] {

 public void reduce(Text keyWord, java.util.Iterator<IntWritable> valuesCounts,
 OutputCollector<Text, IntWritable> output, Reporter reporter) {
 int totalCount = 0;
 while (valuesCounts.hasNext) {
 totalCount += valuesCounts.next.get;
 }
 output.collect(keyWord, new IntWritable(totalCount));
 }
}

Wednesday, December 4, 13
This is intentionally too small to read and we’re not showing the main routine, which doubles the code size. The algorithm is simple, but the framework is in your
face. In the next several slides, notice which colors dominate. In this slide, it’s dominated by green for types (classes), with relatively few yellow functions that
implement actual operations (i.e., do actual work).
The main routine I’ve omitted contains boilerplate details for configuring and running the job. This is just the “core” MapReduce code. In fact, Word Count is not
too bad, but when you get to more complex algorithms, even conceptually simple ideas like relational-style joins and group-bys, the corresponding MapReduce
code in this API gets complex and tedious very fast!

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import java.util.StringTokenizer;

class WCMapper extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 static final IntWritable one = new IntWritable(1);
 static final Text word = new Text; // Value will be set in a non-thread-safe way!

 @Override
 public void map(LongWritable key, Text valueDocContents,
 OutputCollector<Text, IntWritable> output, Reporter reporter) {
 String[] tokens = valueDocContents.toString.split("\\s+");
 for (String wordString: tokens) {
 if (wordString.length > 0) {
 word.set(wordString.toLowerCase);
 output.collect(word, one);
 }
 }
 }
}

class Reduce extends MapReduceBase
 implements Reducer[Text, IntWritable, Text, IntWritable] {

 public void reduce(Text keyWord, java.util.Iterator<IntWritable> valuesCounts,
 OutputCollector<Text, IntWritable> output, Reporter reporter) {
 int totalCount = 0;
 while (valuesCounts.hasNext) {
 totalCount += valuesCounts.next.get;
 }
 output.collect(keyWord, new IntWritable(totalCount));
 }
}

42

The
interesting

bits

Wednesday, December 4, 13
This is intentionally too small to read and we’re not showing the main routine, which doubles the code size. The algorithm is simple, but the framework is in your
face. In the next several slides, notice which colors dominate. In this slide, it’s dominated by green for types (classes), with relatively few yellow functions that
implement actual operations (i.e., do actual work).
The main routine I’ve omitted contains boilerplate details for configuring and running the job. This is just the “core” MapReduce code. In fact, Word Count is not
too bad, but when you get to more complex algorithms, even conceptually simple ideas like relational-style joins and group-bys, the corresponding MapReduce
code in this API gets complex and tedious very fast!

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import java.util.StringTokenizer;

class WCMapper extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 static final IntWritable one = new IntWritable(1);
 static final Text word = new Text; // Value will be set in a non-thread-safe way!

 @Override
 public void map(LongWritable key, Text valueDocContents,
 OutputCollector<Text, IntWritable> output, Reporter reporter) {
 String[] tokens = valueDocContents.toString.split("\\s+");
 for (String wordString: tokens) {
 if (wordString.length > 0) {
 word.set(wordString.toLowerCase);
 output.collect(word, one);
 }
 }
 }
}

class Reduce extends MapReduceBase
 implements Reducer[Text, IntWritable, Text, IntWritable] {

 public void reduce(Text keyWord, java.util.Iterator<IntWritable> valuesCounts,
 OutputCollector<Text, IntWritable> output, Reporter reporter) {
 int totalCount = 0;
 while (valuesCounts.hasNext) {
 totalCount += valuesCounts.next.get;
 }
 output.collect(keyWord, new IntWritable(totalCount));
 }
}

43

2000 called. It wants
its EJBs back!

Wednesday, December 4, 13
This is intentionally too small to read and we’re not showing the main routine, which doubles the code size. The algorithm is simple, but the framework is in your
face. In the next several slides, notice which colors dominate. In this slide, it’s dominated by green for types (classes), with relatively few yellow functions that
implement actual operations (i.e., do actual work).
The main routine I’ve omitted contains boilerplate details for configuring and running the job. This is just the “core” MapReduce code. In fact, Word Count is not
too bad, but when you get to more complex algorithms, even conceptually simple ideas like relational-style joins and group-bys, the corresponding MapReduce
code in this API gets complex and tedious very fast!

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Use Cascading (Java)

Wednesday, December 4, 13
Cascading is a Java library that provides higher-level abstractions for building data processing pipelines with concepts familiar from SQL such as a
joins, group-bys, etc. It works on top of Hadoop’s MapReduce and hides most of the boilerplate from you.
See http://cascading.org.
Photo: Fermi Lab Office Building, Batavia, Illinois, USA (Fermi Lab is a large particle physics accelerator facility.)

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Flow
Pipe ("word count assembly")

Each(Regex)

HDFS
Tap

(source)

line

Tap
(sink)

GroupBy
words

Every(Count)
word count

Word Count: Cascading

45

Wednesday, December 4, 13

Schematically, here is what Word Count looks like in Cascading. See http://
docs.cascading.org/cascading/1.2/userguide/html/ch02.html for details.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved46

import org.cascading.*;
...
public class WordCount {
 public static void main(String[] args) {
 String inputPath = args[0];
 String outputPath = args[1];
 Properties properties = new Properties();
 FlowConnector.setApplicationJarClass(properties, Main.class);

 Scheme sourceScheme = new TextLine(new Fields("line"));
 Scheme sinkScheme = new TextLine(new Fields("word", "count"));
 Tap source = new Hfs(sourceScheme, inputPath);
 Tap sink = new Hfs(sinkScheme, outputPath, SinkMode.REPLACE);

 Pipe assembly = new Pipe("wordcount");

 String regex = "(?<!\\pL)(?=\\pL)[^]*(?<=\\pL)(?!\\pL)";
 Function function = new RegexGenerator(new Fields("word"), regex);
 assembly = new Each(assembly, new Fields("line"), function);
 assembly = new GroupBy(assembly, new Fields("word"));
 Aggregator count = new Count(new Fields("count"));
 assembly = new Every(assembly, count);

 FlowConnector flowConnector = new FlowConnector(properties);
 Flow flow = flowConnector.connect("word-count", source, sink, assembly);
 flow.complete();
 }
}

Wednesday, December 4, 13
Here is the Cascading Java code. It’s cleaner than the MapReduce API, because the code is more focused on the algorithm with less boilerplate,
although it looks like it’s not that much shorter. HOWEVER, this is all the code, where as previously I omitted the setup (main) code. See http://
docs.cascading.org/cascading/1.2/userguide/html/ch02.html for details of the API features used here; we won’t discuss them here, but just
mention some highlights.
Note that there is still a lot of green for types, but at least the API emphasizes composing behaviors together.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Use Scalding (Scala)

Wednesday, December 4, 13
Scalding is a Scala “DSL” (domain-specific language) that wraps Cascading providing an even more intuitive and more boilerplate-free API for
writing MapReduce jobs. https://github.com/twitter/scalding
Scala is a new JVM language that modernizes Java’s object-oriented (OO) features and adds support for functional programming, as we discussed
previously and we’ll revisit shortly.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

import com.twitter.scalding._

class WordCountJob(args: Args)
 extends Job(args) {
 TextLine(args("input"))
 .read
 .flatMap('line -> 'word) {
 line: String =>
 line.trim.toLowerCase
 .split("\\W+")
 }
 .groupBy('word) {
 group => group.size('count)
 }
 }
 .write(Tsv(args("output")))
}

48

That’s It!!

Wednesday, December 4, 13
This Scala code is almost pure domain logic with very little boilerplate. There are a few minor differences in the implementation. You don’t explicitly specify the
“Hfs” (Hadoop Distributed File System) taps. That’s handled by Scalding implicitly when you run in “non-local” model. Also, I’m using a simpler tokenization
approach here, where I split on anything that isn’t a “word character” [0-9a-zA-Z_].
There is little green, in part because Scala infers type in many cases. There is a lot more yellow for the functions that do real work!
What if MapReduce, and hence Cascading and Scalding, went obsolete tomorrow? This code is so short, I wouldn’t care about throwing it away! I invested little
time writing it, testing it, etc.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Use Cascalog (Clojure)

Wednesday, December 4, 13
http://nathanmarz.com/blog/introducing-cascalog-a-clojure-based-query-language-for-hado.html
Clojure is a new JVM, lisp-based language with lots of important concepts, such as persistent datastructures.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

(defn lowercase [w] (.toLowerCase w))

(?<- (stdout) [?word ?count]
 (sentence ?s)
 (split ?s :> ?word1)
 (lowercase ?word1 :> ?word)
 (c/count ?count))

50

Datalog-style queries

Wednesday, December 4, 13
Cascalog embeds Datalog-style logic queries. The variables to match are named ?foo.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Use Spark

Moving Beyond
MapReduce

Wednesday, December 4, 13
http://www.spark-project.org/
Why isn’t it more widely used? 1) lack of commercial support, 2) only recently emerged out of academia.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved52

object WordCountSpark {
 def main(args: Array[String]) {
 val file = spark.textFile(args(0))
 val counts = file.flatMap(
 line => line.split("\\W+"))
 .map(word => (word, 1))
 .reduceByKey(_ + _)
 counts.saveAsTextFile(args(1))
 }
}

Also small and concise!

Wednesday, December 4, 13
This spark example is actually closer in a few details, i.e., function names used, to the original Hadoop Java API example, but it cuts down boilerplate to the bare
minimum.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

• Distributed computing with
in-memory caching.

• ~10-100x faster than
MapReduce (in part due to
caching of intermediate data).

Spark is a Hadoop
MapReduce alternaLve:

53

Wednesday, December 4, 13

Spark also addresses the lack of flexibility for the MapReduce model.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

• Originally designed for
machine learning applications.

• Developed by Berkeley AMP.

Spark is a Hadoop
MapReduce alternaLve:

54

Wednesday, December 4, 13

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Use SQL!
Hive, Shark, Impala,
Presto, or Lingual

Wednesday, December 4, 13
Using SQL when you can! Here are 5 (and growing!) options, some of which still use MapReduce, while others have introduced new, faster runtimes.

Here, we’re discussing SQL as a tool for computation and not discussing the storage aspect of SQL database systems.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

• Hive: SQL on top of MapReduce.

• Shark: Hive ported to Spark.

• Impala & Presto: HiveQL with
new, faster back ends.

• Lingual: ANSI SQL on Cascading.

 Use SQL when you can!

56

Wednesday, December 4, 13

See http://hive.apache.org/ or my book for Hive, http://shark.cs.berkeley.edu/ for shark,
and http://www.cloudera.com/content/cloudera/en/products/cloudera-enterprise-core/
cloudera-enterprise-RTQ.html for Impala. http://www.facebook.com/notes/facebook-
engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920
for Presto. Impala & Presto are relatively new.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved57

CREATE TABLE docs (line STRING);
LOAD DATA INPATH '/path/to/docs'
INTO TABLE docs;

CREATE TABLE word_counts AS
SELECT word, count(1) AS count FROM
(SELECT explode(split(line, '\W+'))
 AS word FROM docs) w
GROUP BY word
ORDER BY word;

Works for Hive, Shark, and Impala

Word Count in Hive SQL!

Wednesday, December 4, 13
This is how you could implement word count in Hive. We’re using some Hive built-in functions for tokenizing words in each “line”, the one “column” in the docs
table, etc., etc.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

We’re in the era I call
The SQL Strikes Back!

(with apologies to
George Lucas...)

58

Wednesday, December 4, 13

IT shops realize that NoSQL is useful and all, but people really, Really, REALLY love SQL. So,
it’s making a big comeback. You can see it in Hadoop, in SQL-like APIs for some “NoSQL”
DBs, e.g., Cassandra and MongoDB’s Javascript-based query language, as well as “NewSQL”
DBs.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Hadoop owes a lot of
its popularity to Hive!

59

Wednesday, December 4, 13

In large companies, the data analysts outnumber the developers by a large margin. Almost all of them know SQL
(even if they happen to use SAS or similar tools more often…).

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Some “NoSQL”
databases have or are
adding query languages

(e.g., Cassandra,
MongoDB).

60

Wednesday, December 4, 13

Cassandra’s is relatively new and based on SQL. MongoDB has always had one, based on a Javascript DSL.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

“NewSQL” databases
are bringing NoSQL
performance to the
relaLonal model.

61

Wednesday, December 4, 13

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

• Google Spanner and F1.

• NuoDB.

• VoltDB.

Examples

62

Wednesday, December 4, 13

Spanner is the successor to BigTable. It is a globally-distributed database (consistency is maintained using the
Paxos algo. and hardware synchronized clocks through GPS and atomic clocks!) Each table requires a primary key.
F1 is an RDBMS built on top of it.
NuoDB is a cloud based RDBMS.
VoltDB is an example “in-memory” database, which are ideal for lots of small transactions that leverage indexing
and rarely require full table scans.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

(So, take what I said earlier:
 Formal Schemas ⬇
with a grain of salt...)

63

Wednesday, December 4, 13

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

MapReduce is not
suitable for

event processing
(“real-­‐Lme”).

64

Wednesday, December 4, 13

For typical web/enterprise systems, “real-time” is up to 100s of milliseconds, so I’m using
the term broadly (but following common practice in this industry). True real-time systems,
such as avionics, have much tighter constraints.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Storm!

Wednesday, December 4, 13
Photo: Top of the AON Building, Chicago, after a Storm passed through.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Storm implements
reliable, distributed
event processing.

66

Wednesday, December 4, 13

http://storm-project.net/ Created by Nathan Marz, now at Twitter, who also created
Cascalog.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Spout

Bolt

Bolt

Bolt

BoltSpout

67

Wednesday, December 4, 13

In Storm terminology, Spouts are data sources and bolts are the event processors. There are
facilities to support reliable message handling, various sources encapsulated in Sprouts and
various targets of output. Distributed processing is baked in from the start.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Spark and Message
Queues are also being
used for distributed
event processing.

68

Wednesday, December 4, 13

http://storm-project.net/ Created by Nathan Marz, now at Twitter, who also created
Cascalog.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Databases to
the Rescue?

Wednesday, December 4, 13
Databases as a real-time event processing option?

Photo: Outside my condo window, Chicago!

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

 SQL or NoSQL
Databases?

70

Capture events in a database
with fast writes.

Wednesday, December 4, 13

Use a SQL database unless you need the scale and looser schema of a NoSQL database!

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

 HDFS?

71

HDFS is oriented towards
batch-mode reads and writes.

So, it’s not suitable for
incremental updates, like
capturing events.

Wednesday, December 4, 13

Databases are great for capturing individual records, especially in append-only scenarios.
So, storage is another important aspect of event processing.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved72

Hadoop vs. SQL?
• Hadoop

• Very flexible
compute
model

• “Table” scans

• Batch mode

• NoSQL / SQL

• Focused on a
data model

• Transactional

• Event driven

Wednesday, December 4, 13

What else can we say about Hadoop vs. SQL?

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved73

Your current data
warehouse can only

store 6-­‐months of data
without a $1M upgrade.

Problem:

Wednesday, December 4, 13

Very common scenario. Numbers roughly correspond to a situation faced by a client...

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved74

• Pros

• Mature

• Rich SQL,
analytics

• Mid-size data

• Cons

• Expensive -
$/TB

• Scalability
limits

TradiLonal DW

Wednesday, December 4, 13

Data warehouses tend to be more scalable and a little less expensive than OLTP systems,
which is why they are used to “warehouse” transactional data and perform analytics. However,
their $/TB is ~10x-100x the cost on Hadoop and Hadoop scales to larger data sets.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved75

SQL is very important
for data warehouse

applicaLons,
but transacLons aren’t.

Wednesday, December 4, 13

NoSQL does give you the more cost-effective storage, but SQL is very important for most DW
applications, so your “NoSQL” store would need a powerful query tool to support common
DW scenarios. However, DW experts usually won’t tolerate anything that isn’t SQL. Note that
Cassandra is one of several NoSQL and “NewSQL” databases with a SQL dialect.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved76

• Traditional DW

+Mature

+Rich SQL,
analytics

- Scalability

- $$/TB

• Hadoop

- Less mature

+ Improving
SQL

+Scalable!

+Low $/TB

Wednesday, December 4, 13

Data warehouses tend to be more scalable and a little less expensive than OLTP systems,
which is why they are used to “warehouse” transactional data and perform analytics. However,
their $/TB is ~10x the cost on Hadoop and Hadoop scales to larger data sets.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved77

Hadoop has become a
popular data warehouse
supplement/replacement.

Wednesday, December 4, 13

Many of my projects have offloaded an overburdened or expensive traditional data warehouse
to Hadoop. Sometimes a wholesale replacement, but more often a supplemental strategy, at
least for a transitional period of some duration.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

MapReduce is not ideal
for graph algorithms.

78

Wednesday, December 4, 13

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Graph Systems

Wednesday, December 4, 13
A good summary presentation: http://www.slideshare.net/shatteredNirvana/pregel-a-system-for-largescale-graph-processing
Photo: Detail of the now-closed Esquire Movie Theater, a few blocks from here, Feb. 2011

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Google invented MapReduce,

… but MapReduce is not ideal for
Page Rank and other graph
algorithms.

 Google’s Page Rank

80

Wednesday, December 4, 13

PageRank is the famous algorithm invented by Sergey Brin and Larry Page to index the web. It’s the foundation of
Google’s search engine (and total world domination ;).

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

• 1 MR job for each
iteration that updates
all n nodes/edges.

• Graph saved to disk
after each iteration.

• ...

Why not MapReduce?

C

E

A

D

F

B

81

Wednesday, December 4, 13

The presentation http://www.slideshare.net/shatteredNirvana/pregel-a-system-for-largescale-graph-processing
itemizes all the major issues with using MR to implement graph algorithms.
In a nutshell, a job with a map and reduce phase is waaay to course-grained...

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

• Pregel: New graph framework for
Page Rank.

• Bulk, Synchronous Parallel (BSP).

• Graphs are first-class citizens.

• Efficiently processes updates...

 Google’s Pregel

82

Wednesday, December 4, 13

Pregel is the name of the river that runs through the city of Königsberg, Prussia (now called Kaliningrad, Ukraine).
7 bridges crossed the river in the city (including to 5 to 2 islands between river branches). Leonhard Euler invented
graph theory when we analyzed the question of whether or not you can cross all 7 bridges without retracing your
steps (you can’t).

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

• Apache Giraph.

• Apache Hama.

• Aurelius Titan.

 Open-­‐source
AlternaLves

All are
somewhat
immature.

83

Wednesday, December 4, 13

http://incubator.apache.org/giraph/
http://hama.apache.org/
http://thinkaurelius.github.com/titan/
None is very mature nor has extensive commercial support.
I didn’t mention popular options like Neo4J because I’m focusing on cluster-oriented tools.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

SomeLmes, you need a
specialized tool.

84

Wednesday, December 4, 13

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Purpose-­‐built Tools

Wednesday, December 4, 13
I see that a trend where completely generic tooling is giving way to more “purpose-built” tooling...

Photo: Buildings along the Chicago River.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

New Hadoop
file formats, opLmize
access (e.g., Parquet).

86

New compute engines
(e.g., Impala, Presto).

Wednesday, December 4, 13

In the quest for ever better performance over massive datasets, the generic file formats in Hadoop and MapReduce
are hitting a performance wall (although not everyone agrees). Parquet is column oriented & contains the data
schema, like Thrift, Avro, and Protobuf. It will be exploited to optimize queries over massive data sets, much
faster than the older file formats. Similarly, Impala is purpose built optimized query engine (that relies on
Parquet).

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved87

Example of solving a
specific problem with a

custom soluLon.

Lucene with Solr
and ElasLcSearch

Wednesday, December 4, 13

This is an example of a specific problem domain and focused tools to solve it.
http://www.elasticsearch.org/, http://lucene.apache.org/solr/

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

MapReduce is not
iteraLve, so Machine
Learning algorithms
perform poorly.

88

Wednesday, December 4, 13

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Machine
Learning

Wednesday, December 4, 13

ML includes recommendation engines (e.g., the way Netflix recommends movies to you or Amazon recommends
products), classification (e.g., SPAM classifiers, character and image recognition), and clustering. Other specialized
examples include text mining and other forms of natural language processing (NLP).

Photo: Two famous 19th Century Buildings in Chicago.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved90

• Recommendations: Netflix
movies, Amazon products, ...

• Classification: SPAM filters,
character recognition, ...

• Clustering: Find groups in social
networks, ...

Wednesday, December 4, 13

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved91

ML algorithms
tend to be iteraLve,

but they can be force fit
into MapReduce.

Wednesday, December 4, 13

Many ML algorithms iterate to a solution.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

• Mahout: MapReduce algorithms.

• Pattern: PMML on Cascading.

• Spark: More flexible compute
model.

 Machine Learning Tools

92

Wednesday, December 4, 13

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

• Train ML models with Hadoop.

• Store model in a database.

• Predict based on user events.

Common Workflow

93

Wednesday, December 4, 13

Since Hadoop is not suitable for event handling, it’s common to train prediction,
recommendation, etc. models with MapReduce, but store the model in a fast store, so the
model can be used in real time to make predictions, etc.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

• Languages for Probabilistic
Graphical Models??

• Bayesian Networks.

• Markov Chains.

• ...

Emerging: ProbabilisLc
Programming

94

Wednesday, December 4, 13

http://en.wikipedia.org/wiki/Bayesian_network
http://en.wikipedia.org/wiki/Markov_chain
PGMs are essential tools for many machine learning and artificial intelligence systems. But they require some
expertise to build, both mastery of the PGM concepts and implementing them in conventional programming
languages There is growing interest in designing languages that encapsulate this complexity.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

So, where are we??

Wednesday, December 4, 13
Now that we have cataloged some issues and solutions, let’s recap and look forward.
Photo: Lake Michigan, near Ohio Street Beach, Chicago, Feb. 2011.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Hadoop MapReduce is the
Enterprise Java Beans

 of our Lme.

Wednesday, December 4, 13
I worked with EJBs a decade ago. The framework was completely invasive into your business logic. There were too many configuration options in
XML files. The framework “paradigm” was a poor fit for most problems (like soft real time systems and most algorithms beyond Word Count).
Internally, EJB implementations were inefficient and hard to optimize, because they relied on poorly considered object boundaries that muddled
more natural boundaries. (I’ve argued in other presentations and my “FP for Java Devs” book that OOP is a poor modularity tool…)
The fact is, Hadoop reminds me of EJBs in almost every way. It’s a 1st generation solution that mostly works okay and people do get work done
with it, but just as the Spring Framework brought an essential rethinking to Enterprise Java, I think there is an essential rethink that needs to
happen in Big Data, specifically around Hadoop. The functional programming community, is well positioned to create it...

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

MapReduce
 is waning

Wednesday, December 4, 13

We’ve seen a lot of issues with MapReduce. Already, alternatives are being developed, either general options, like
Spark and Storm, or special-purpose built replacements, like Impala. Let’s consider other options...

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Emerging replacements
are based on

 FuncLonal Languages...
import com.twitter.scalding._

class WordCountJob(args: Args) extends Job(args) {
 TextLine(args("input"))
 .read
 .flatMap('line -> 'word) {
 line: String =>
 line.trim.toLowerCase
 .split("\\W+")
 }
 .groupBy('word) {
 group => group.size('count) }
 }
 .write(Tsv(args("output")))
}

Wednesday, December 4, 13

FP is such a natural fit for the problem that any attempts to build big data systems without it will be handicapped
and probably fail.
Let’s consider other MapReduce options...

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

... and SQL,
which is roaring back!

CREATE TABLE docs (line STRING);
LOAD DATA INPATH '/path/to/docs'
INTO TABLE docs;

CREATE TABLE word_counts AS
SELECT word, count(1) AS count FROM
(SELECT explode(split(line, '\W+'))
 AS word FROM docs) w
GROUP BY word
ORDER BY word;

Wednesday, December 4, 13

FP is such a natural fit for the problem that any attempts to build big data systems without it will be handicapped
and probably fail.
Let’s consider other MapReduce options...

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Why are Scala, Clojure,
and SQL soluLons so

concise and appealing?

100

Wednesday, December 4, 13

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Big Data is
MathemaLcs.

∴ FuncLonal Languages
are the best tools.

101

Wednesday, December 4, 13

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

Concurrency
has been called

the killer app for FP.

Big Data is a
bigger killer app, IMHO.

102

Wednesday, December 4, 13

I think big data may drive FP adoption just as much as concurrency concerns, if not more so.
Why? Because I suspect more developers will need to get “good” at data, vs. good at
concurrency.

Copyright © 2011-­‐2013, Dean Wampler, All Rights Reserved

QuesLons?

CodeMesh 2013, December 4
dean.wampler@typesafe.com
@deanwampler
polyglotprogramming.com/talks

Wednesday, December 4, 13

All pictures Copyright © Dean Wampler, 2011-2013, All Rights Reserved. All other content is free to use, but
attribution is requested.
Photo: Building in fog on Michigan Avenue, Chicago.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:dean.wampler@typesafe.com?subject=About%20your%20What's%20Ahead%20for%20Big%20Data%20talk
mailto:dean.wampler@typesafe.com?subject=About%20your%20What's%20Ahead%20for%20Big%20Data%20talk
http://twitter.com/deanwampler
http://twitter.com/deanwampler
https://twitter.com/deanwampler
https://twitter.com/deanwampler
http://polyglotprogramming.com/talks
http://polyglotprogramming.com/talks

