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Typesafe builds tools for creating Reactive Applications, http://typesafe.com/platform. See 
also the Reactive Manifesto, http://www.reactivemanifesto.org/
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I’ve been doing Scala for 6 years and Big Data for 3.5 years.
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What  Is  Big  Data?
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Big  Data
Data  so  big  that  

tradiLonal  soluLons  are  
too  slow,  too  small,  or  
too  expensive  to  use.

6

Hat tip: Bob Korbus

Wednesday, December 4, 13

It’s a buzz word, but generally associated with the problem of data sets too big to manage 
with traditional SQL databases. A parallel development has been the NoSQL movement that is 
good at handling semistructured data, scaling, etc.
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3  Trends

Wednesday, December 4, 13
Three prevailing trends driving data-centric computing.
Photo: Prizker Pavilion, Millenium Park, Chicago (designed by Frank Gehry)
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Data  Size  ⬆

Wednesday, December 4, 13
Data volumes are obviously growing… rapidly.
Facebook now has over 600PB (Petabytes) of data in Hadoop clusters!
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Formal  Schemas  ⬇

Wednesday, December 4, 13
There is less emphasis on “formal” schemas and domain models, i.e., both relational models of data and OO models, because data schemas and 
sources change rapidly, and we need to integrate so many disparate sources of data. So, using relatively-agnostic software, e.g., collections of 
things where the software is more agnostic about the structure of the data and the domain, tends to be faster to develop, test, and deploy. Put 
another way, we find it more useful to build somewhat agnostic applications and drive their behavior through data...
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Data-­‐Driven  Programs  ⬆

Wednesday, December 4, 13
This is the 2nd generation “Stanley”, the most successful self-driving car ever built (by a Google-Stanford) team. Machine learning is growing in 
importance. Here, generic algorithms and data structures are trained to represent the “world” using data, rather than encoding a model of the 
world in the software itself. It’s another example of generic algorithms that produce the desired behavior by being application agnostic and data 
driven, rather than hard-coding a model of the world. (In practice, however, a balance is struck between completely agnostic apps and some 
engineering towards for the specific problem, as you might expect...)
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Probabilistic 
Models vs. 
Formal 
Grammars 

tor.com/blogs/...

Wednesday, December 4, 13
An interesting manifestation of this trend is the public argument between Noam Chomsky and Peter Norvig on the nature of language. Chomsky 
long ago proposed a hierarchical model of formal language grammars. Peter Norvig is a proponent of probabilistic models of language. Indeed all 
successful automated language processing systems are probabilistic.
http://www.tor.com/blogs/2011/06/norvig-vs-chomsky-and-the-fight-for-the-future-of-ai

http://www.tor.com/blogs/2011/06/norvig-vs-chomsky-and-the-fight-for-the-future-of-ai
http://www.tor.com/blogs/2011/06/norvig-vs-chomsky-and-the-fight-for-the-future-of-ai
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Big  Data
Architectures

Wednesday, December 4, 13
What should software architectures look like for these kinds of systems?
Photo: Cloud Gate (a.k.a. “The Bean”) in Millenium Park, Chicago, on a cloudy day. 
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Wednesday, December 4, 13
Traditionally, we’ve kept a rich, in-memory domain model requiring an ORM to convert persistent data into the model. This is resource overhead and complexity we can’t afford in big data 
systems. Rather, we should treat the result set as it is, a particular kind of collection, do the minimal transformation required to exploit our collections libraries and classes representing some 
domain concepts (e.g., Address, StockOption, etc.), then write functional code to implement business logic (or drive emergent behavior with machine learning algorithms…)

The toJSON methods are there because we often convert these object graphs back into fundamental structures, such as the maps and arrays of JSON so we can send them to the browser!
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Object Model
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But the traditional systems are a poor fit for this new world: 1) they add too much overhead in computation (the ORM layer, etc.) and memory (to store the objects). Most of what we do with 
data is mathematical transformation, so we’re far more productive (and runtime efficient) if we embrace fundamental data structures used throughout (lists, sets, maps, trees) and build rich 
transformations into those libraries, transformations that are composable to implement business logic.
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But the traditional systems are a poor fit for this new world: 1) they add too much overhead in computation (the ORM layer, etc.) and memory (to store the objects). Most of what we do with 
data is mathematical transformation, so we’re far more productive (and runtime efficient) if we embrace fundamental data structures used throughout (lists, sets, maps, trees) and build rich 
transformations into those libraries, transformations that are composable to implement business logic.
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toJSON
ParentB1

toJSON
ChildB1

toJSON
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Web Client 1 Web Client 2 Web Client 3

FilesDatabase
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In a broader view, object models tend to push us towards centralized, complex systems that don’t decompose well and stifle reuse and optimal deployment scenarios. FP code makes it 
easier to write smaller, focused services that we compose and deploy as appropriate.
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In a broader view, object models tend to push us towards centralized, complex systems that don’t decompose well and stifle reuse and optimal deployment scenarios. FP code makes it 
easier to write smaller, focused services that we compose and deploy as appropriate. Each “ProcessN” could be a parallel copy of another process, for horizontal, “shared-nothing” 
scalability, or some of these processes could be other services…
Smaller, focused services scale better, especially horizontally. They also don’t encapsulate more business logic than is required, and this (informal) architecture is also suitable for scaling 
ML and related algorithms.
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• Data Size ⬆

• Formal 
Schema ⬇

• Data-Driven 
Programs ⬆

Web Client 1 Web Client 2 Web Client 3

Process 1 Process 2 Process 3

FilesDatabase
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And this structure better fits the trends I outlined at the beginning of the talk.
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• MapReduce

• Distributed FS

Web Client 1 Web Client 2 Web Client 3

Process 1 Process 2 Process 3

FilesDatabase

Wednesday, December 4, 13
And MapReduce + a distributed file system, like Hadoop’s MapReduce and HDFS, fit this model. 
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• Node.js?

• JSON database?

Web Client 1 Web Client 2 Web Client 3

Process 1 Process 2 Process 3

FilesDatabase

• JSON
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One interesting incarnation of this is JavaScript through the full stack, with JSON as the RPC format, stored directly (more or less) in a database like Mongo, CouchBase, and RethinkDB. 
Node gives you JS in the mid-tier, and JSON is obviously a browser tool. 
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What  Is
MapReduce?

Wednesday, December 4, 13
Cloud Gate - “The Bean” - in Millenium Park, Chicago, on a sunny day - with some of my relatives ;)
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Hadoop  is  the  dominant  
Big  Data  plaUorm

today.

22

Wednesday, December 4, 13
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A  Hadoop  Cluster
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Hadoop v1.X Cluster
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A Hadoop v1.X cluster. (V2.X introduces changes in the master processes, including support for high-availability and federation…). In brief:
JobTracker (JT): Master of submitted MapReduce jobs. Decomposes job into tasks (each a JVM process), often run where the “blocks” of input files 
are located, to minimize net IO.
NameNode (NN): HDFS (Hadoop Distributed File System) master. Knows all the metadata, like block locations. Writes updates to a shared NFS disk 
(in V1) for use by the Secondary NameNode.
Secondary NameNode (SNN): periodically merges in-memory HDFS metadata with update log on NFS disk to form new metadata image used when 
booting the NN and SNN.
TaskTracker: manages each task given to it by the JT.
DataNode: manages the actual blocks it has on the node. 
Disks: By default, Hadoop just works with “a bunch of disks” - cheaper and sometimes faster than RAID. Blocks are replicated 3x (default) so most 
HW failures don’t result in data loss. 
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MapReduce  in  Hadoop

Let’s  look  at  a  
MapReduce  algorithm:  

Inverted  Index.

Used  for  text/web  search.

24
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Let’s walk through a simple version of computing an inverted index. Imagine a web crawler has found all docs on the web and stored their URLs 
and contents in HDFS. Now we’ll index it; build a map from each word to all the docs where it’s found, ordered by term frequency within the docs.
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Crawl  teh  Interwebs
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Crawl pages, including Wikipedia. Use the URL as the document id in our first index, and the contents of each document (web page) as the second 
“column”. in our data set.
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Compute  Inverse  Index
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Now run a MapReduce job, where a separate Map task for each input block will be started. Each map tokenizes the content in to words, counts the 
words, and outputs key-value pairs... 
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Compute  Inverse  Index
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Key-values output
by first map task

Map Task
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(mapreduce,(wikipediate.org/hadoop, 1))
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(provides,(wikipedia.org/hadoop,1))

(and,(wikipedia.org/hadoop,1))
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Now run a MapReduce job, where a separate Map task for each input block will be started. Each map tokenizes the content in to words, counts the 
words, and outputs key-value pairs... 
… Each key is a word that was found and the corresponding value is a tuple of the URL (or other document id) and the count of the words (or 
alternatively, the frequency within the document). Shown are what the first map task would output (plus other k-v pairs) for the (fake) Wikipedia 
“Hadoop” page. (Note that we convert to lower case…)
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Compute  Inverse  Index
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Finally, each reducer will get some range of the keys. There are ways to control this, but we’ll just assume that the first reducer got all keys starting 
with “h” and the last reducer got all the “and” keys. The reducer outputs each word as a key and a list of tuples consisting of the URLs (or doc ids) 
and the frequency/count of the word in that document, sorted by most frequent first. (All our docs have only one occurrence of any word, so the 
sort is moot…)
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Anatomy:  MapReduce  Job
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To recap, a true functional/mathematical “map” transforms one input to one output, but this is generalized in MapReduce to be one to 0-N. In 
other words, it should be “FlatmapReduce”!! The output key-value pairs are distributed to reducers. The “reduce” collects together multiple inputs 
with the same key into
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Wednesday, December 4, 13

Quiz. Do you understand this tweet?
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So,  MapReduce  is
a  mashup  of  our  friends
flatmap  and  reduce.

31
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Even in this somewhat primitive and coarse-grain framework, our functional data concepts are evident!



Copyright  ©  2011-­‐2013,  Dean  Wampler,  All  Rights  Reserved

Today,  
Hadoop  is  our  best,  
general-­‐purpose  tool  
for  horizontal  scaling  

of  Big  Data,
but...

32

Wednesday, December 4, 13
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MapReduce  and  Its  
Discontents

Wednesday, December 4, 13

Is MapReduce the end of the story? Does it meet all our needs? Let’s look at a few problems…
Photo: Gratuitous Romantic beach scene, Ohio St. Beach, Chicago, Feb. 2011.
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MapReduce  doesn’t  fit  
all  computaLon  needs.  
HDFS  doesn’t  fit  all  
storage  needs.

34
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Let’s frame our discussion of where Big Data is going by contrasting needs and options with the current standard, 
MapReduce and HDFS (Hadoop Distributed File System).
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It’s  hard  to  implement  
many  algorithms  
in  MapReduce.

35
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Even word count is not “obvious”. When you get to fancier stuff like joins, group-bys, etc., the 
mapping from the algorithm to the implementation is not trivial at all. In fact, implementing 
algorithms in MR is now a specialized body of knowledge.
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MapReduce  is  very  
course-­‐grained.

1-­‐Map,  1-­‐Reduce  
phase...

Wednesday, December 4, 13

Even word count is not “obvious”. When you get to fancier stuff like joins, group-bys, etc., the 
mapping from the algorithm to the implementation is not trivial at all. In fact, implementing 
algorithms in MR is now a specialized body of knowledge.
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MulLple  MR  jobs  
required  for  some  

algorithms.

Each  one  flushes  its  
results  to  disk!

Wednesday, December 4, 13

If you have to sequence MR jobs to implement an algorithm, ALL the data is flushed to disk 
between jobs. There’s no in-memory caching of data, leading to huge IO overhead.
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MapReduce  is  designed  
for  offline,  batch-­‐mode  

analyLcs.

High  latency;  not  
suitable  for  event  

processing.
Wednesday, December 4, 13

Alternatives are emerging to provide event-stream (“real-time”) processing.
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The  Hadoop  Java  API
is  hard  to  use.

39
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The Hadoop Java API is even more verbose and tedious to use than it should be.
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Let’s  look  at  code  for  a  
simpler  algorithm,  

Word  Count.
(Tokenize  as  before,  but  

ignore  original  
document  locaLons.)

40
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In Word Count, the mapper just outputs the word-count pairs. We forget about the document 
URL/id. The reducer gets all word-count pairs for a word from all mappers and outputs each 
word with its final, global count. 
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import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import java.util.StringTokenizer;

class WCMapper extends MapReduceBase 
    implements Mapper<LongWritable, Text, Text, IntWritable> {

  static final IntWritable one  = new IntWritable(1);
  static final Text word = new Text;   // Value will be set in a non-thread-safe way!

  @Override
  public void map(LongWritable key, Text valueDocContents, 
          OutputCollector<Text, IntWritable> output, Reporter reporter) {
    String[] tokens = valueDocContents.toString.split("\\s+");
    for (String wordString: tokens) {
      if (wordString.length > 0) {
        word.set(wordString.toLowerCase);
        output.collect(word, one);
      }
    }
  }
}

class Reduce extends MapReduceBase 
    implements Reducer[Text, IntWritable, Text, IntWritable] {

  public void reduce(Text keyWord, java.util.Iterator<IntWritable> valuesCounts, 
             OutputCollector<Text, IntWritable> output, Reporter reporter) {
    int totalCount = 0;
    while (valuesCounts.hasNext) {
      totalCount += valuesCounts.next.get;
    }
    output.collect(keyWord, new IntWritable(totalCount));
  }
}

Wednesday, December 4, 13
This is intentionally too small to read and we’re not showing the main routine, which doubles the code size. The algorithm is simple, but the framework is in your 
face. In the next several slides, notice which colors dominate. In this slide, it’s dominated by green for types (classes), with relatively few yellow functions that 
implement actual operations (i.e., do actual work). 
The main routine I’ve omitted contains boilerplate details for configuring and running the job. This is just the “core” MapReduce code. In fact, Word Count is not 
too bad, but when you get to more complex algorithms, even conceptually simple ideas like relational-style joins and group-bys, the corresponding MapReduce 
code in this API gets complex and tedious very fast!
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import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import java.util.StringTokenizer;

class WCMapper extends MapReduceBase 
    implements Mapper<LongWritable, Text, Text, IntWritable> {

  static final IntWritable one  = new IntWritable(1);
  static final Text word = new Text;   // Value will be set in a non-thread-safe way!

  @Override
  public void map(LongWritable key, Text valueDocContents, 
          OutputCollector<Text, IntWritable> output, Reporter reporter) {
    String[] tokens = valueDocContents.toString.split("\\s+");
    for (String wordString: tokens) {
      if (wordString.length > 0) {
        word.set(wordString.toLowerCase);
        output.collect(word, one);
      }
    }
  }
}

class Reduce extends MapReduceBase 
    implements Reducer[Text, IntWritable, Text, IntWritable] {

  public void reduce(Text keyWord, java.util.Iterator<IntWritable> valuesCounts, 
             OutputCollector<Text, IntWritable> output, Reporter reporter) {
    int totalCount = 0;
    while (valuesCounts.hasNext) {
      totalCount += valuesCounts.next.get;
    }
    output.collect(keyWord, new IntWritable(totalCount));
  }
}

42

The 
interesting 

bits
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This is intentionally too small to read and we’re not showing the main routine, which doubles the code size. The algorithm is simple, but the framework is in your 
face. In the next several slides, notice which colors dominate. In this slide, it’s dominated by green for types (classes), with relatively few yellow functions that 
implement actual operations (i.e., do actual work). 
The main routine I’ve omitted contains boilerplate details for configuring and running the job. This is just the “core” MapReduce code. In fact, Word Count is not 
too bad, but when you get to more complex algorithms, even conceptually simple ideas like relational-style joins and group-bys, the corresponding MapReduce 
code in this API gets complex and tedious very fast!
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import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import java.util.StringTokenizer;

class WCMapper extends MapReduceBase 
    implements Mapper<LongWritable, Text, Text, IntWritable> {

  static final IntWritable one  = new IntWritable(1);
  static final Text word = new Text;   // Value will be set in a non-thread-safe way!

  @Override
  public void map(LongWritable key, Text valueDocContents, 
          OutputCollector<Text, IntWritable> output, Reporter reporter) {
    String[] tokens = valueDocContents.toString.split("\\s+");
    for (String wordString: tokens) {
      if (wordString.length > 0) {
        word.set(wordString.toLowerCase);
        output.collect(word, one);
      }
    }
  }
}

class Reduce extends MapReduceBase 
    implements Reducer[Text, IntWritable, Text, IntWritable] {

  public void reduce(Text keyWord, java.util.Iterator<IntWritable> valuesCounts, 
             OutputCollector<Text, IntWritable> output, Reporter reporter) {
    int totalCount = 0;
    while (valuesCounts.hasNext) {
      totalCount += valuesCounts.next.get;
    }
    output.collect(keyWord, new IntWritable(totalCount));
  }
}
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2000 called. It wants 
its EJBs back!
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This is intentionally too small to read and we’re not showing the main routine, which doubles the code size. The algorithm is simple, but the framework is in your 
face. In the next several slides, notice which colors dominate. In this slide, it’s dominated by green for types (classes), with relatively few yellow functions that 
implement actual operations (i.e., do actual work). 
The main routine I’ve omitted contains boilerplate details for configuring and running the job. This is just the “core” MapReduce code. In fact, Word Count is not 
too bad, but when you get to more complex algorithms, even conceptually simple ideas like relational-style joins and group-bys, the corresponding MapReduce 
code in this API gets complex and tedious very fast!
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Use Cascading (Java)

Wednesday, December 4, 13
Cascading is a Java library that provides higher-level abstractions for building data processing pipelines with concepts familiar from SQL such as a 
joins, group-bys, etc. It works on top of Hadoop’s MapReduce and hides most of the boilerplate from you.
See http://cascading.org.
Photo: Fermi Lab Office Building, Batavia, Illinois, USA (Fermi Lab is a large particle physics accelerator facility.)
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Pipe ("word count assembly")
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word count

Word  Count:  Cascading
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Schematically, here is what Word Count looks like in Cascading. See http://
docs.cascading.org/cascading/1.2/userguide/html/ch02.html for details.
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import org.cascading.*;
...
public class WordCount {
  public static void main(String[] args) {
    String inputPath  = args[0];
    String outputPath = args[1];
    Properties properties = new Properties();
    FlowConnector.setApplicationJarClass( properties, Main.class );

    Scheme sourceScheme = new TextLine( new Fields( "line" ) );
    Scheme sinkScheme = new TextLine( new Fields( "word", "count" ) );
    Tap source = new Hfs( sourceScheme, inputPath );
    Tap sink   = new Hfs( sinkScheme, outputPath, SinkMode.REPLACE );

    Pipe assembly = new Pipe( "wordcount" );

    String regex = "(?<!\\pL)(?=\\pL)[^ ]*(?<=\\pL)(?!\\pL)";
    Function function = new RegexGenerator( new Fields( "word" ), regex );
    assembly = new Each( assembly, new Fields( "line" ), function );
    assembly = new GroupBy( assembly, new Fields( "word" ) );
    Aggregator count = new Count( new Fields( "count" ) );
    assembly = new Every( assembly, count );

    FlowConnector flowConnector = new FlowConnector( properties );
    Flow flow = flowConnector.connect( "word-count", source, sink, assembly);
    flow.complete();
  }
}

Wednesday, December 4, 13
Here is the Cascading Java code. It’s cleaner than the MapReduce API, because the code is more focused on the algorithm with less boilerplate, 
although it looks like it’s not that much shorter. HOWEVER, this is all the code, where as previously I omitted the setup (main) code. See http://
docs.cascading.org/cascading/1.2/userguide/html/ch02.html for details of the API features used here; we won’t discuss them here, but just 
mention some highlights. 
Note that there is still a lot of green for types, but at least the API emphasizes composing behaviors together.
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Use Scalding (Scala)

Wednesday, December 4, 13
Scalding is a Scala “DSL” (domain-specific language) that wraps Cascading providing an even more intuitive and more boilerplate-free API for 
writing MapReduce jobs.  https://github.com/twitter/scalding
Scala is a new JVM language that modernizes Java’s object-oriented (OO) features and adds support for functional programming, as we discussed 
previously and we’ll revisit shortly.
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import com.twitter.scalding._

class WordCountJob(args: Args)
    extends Job(args) {
  TextLine( args("input") )
    .read
    .flatMap('line -> 'word) {
      line: String => 
        line.trim.toLowerCase
            .split("\\W+") 
    }
    .groupBy('word) { 
      group => group.size('count)
    }
  }
  .write(Tsv(args("output")))
}

48

That’s It!!
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This Scala code is almost pure domain logic with very little boilerplate. There are a few minor differences in the implementation. You don’t explicitly specify the 
“Hfs” (Hadoop Distributed File System) taps. That’s handled by Scalding implicitly when you run in “non-local” model. Also, I’m using a simpler tokenization 
approach here, where I split on anything that isn’t a “word character” [0-9a-zA-Z_].
There is little green, in part because Scala infers type in many cases. There is a lot more yellow for the functions that do real work!
What if MapReduce, and hence Cascading and Scalding, went obsolete tomorrow? This code is so short, I wouldn’t care about throwing it away! I invested little 
time writing it, testing it, etc.



Copyright  ©  2011-­‐2013,  Dean  Wampler,  All  Rights  Reserved

Use Cascalog (Clojure)
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http://nathanmarz.com/blog/introducing-cascalog-a-clojure-based-query-language-for-hado.html
Clojure is a new JVM, lisp-based language with lots of important concepts, such as persistent datastructures.
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(defn lowercase [w] (.toLowerCase w))

(?<- (stdout) [?word ?count] 
 (sentence ?s) 
   (split ?s :> ?word1)
 (lowercase ?word1 :> ?word) 
   (c/count ?count))

50

Datalog-style queries

Wednesday, December 4, 13
Cascalog embeds Datalog-style logic queries. The variables to match are named ?foo.
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Use  Spark

Moving  Beyond  
MapReduce

Wednesday, December 4, 13
http://www.spark-project.org/
Why isn’t it more widely used? 1) lack of commercial support, 2) only recently emerged out of academia.
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object WordCountSpark {
  def main(args: Array[String]) {
    val file = spark.textFile(args(0))
    val counts = file.flatMap(
      line => line.split("\\W+"))
                  .map(word => (word, 1))
                  .reduceByKey(_ + _)
    counts.saveAsTextFile(args(1))
  }
}

Also small and concise!

Wednesday, December 4, 13
This spark example is actually closer in a few details, i.e., function names used, to the original Hadoop Java API example, but it cuts down boilerplate to the bare 
minimum.
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• Distributed computing with 
in-memory caching.

• ~10-100x faster than 
MapReduce (in part due to 
caching of intermediate data).

Spark  is  a  Hadoop  
MapReduce  alternaLve:

53

Wednesday, December 4, 13

Spark also addresses the lack of flexibility for the MapReduce model.
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• Originally designed for 
machine learning applications.

• Developed by Berkeley AMP.

Spark  is  a  Hadoop  
MapReduce  alternaLve:

54

Wednesday, December 4, 13
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Use SQL!  
Hive,  Shark,  Impala, 
Presto, or  Lingual

Wednesday, December 4, 13
Using SQL when you can! Here are 5 (and growing!) options, some of which still use MapReduce, while others have introduced new, faster runtimes.

Here, we’re discussing SQL as a tool for computation and not discussing the storage aspect of SQL database systems.
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• Hive: SQL on top of MapReduce.

• Shark: Hive ported to Spark.

• Impala & Presto: HiveQL with 
new, faster back ends.

• Lingual: ANSI SQL on Cascading.

  Use  SQL  when  you  can!

56
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See http://hive.apache.org/ or my book for Hive, http://shark.cs.berkeley.edu/ for shark, 
and http://www.cloudera.com/content/cloudera/en/products/cloudera-enterprise-core/
cloudera-enterprise-RTQ.html for Impala. http://www.facebook.com/notes/facebook-
engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920 
for Presto. Impala & Presto are relatively new. 
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CREATE TABLE docs (line STRING);
LOAD DATA INPATH '/path/to/docs' 
INTO TABLE docs;

CREATE TABLE word_counts AS
SELECT word, count(1) AS count FROM
(SELECT explode(split(line, '\W+')) 
 AS word FROM docs) w
GROUP BY word
ORDER BY word;

Works for Hive, Shark, and Impala

Word  Count  in  Hive  SQL!

Wednesday, December 4, 13
This is how you could implement word count in Hive. We’re using some Hive built-in functions for tokenizing words in each “line”, the one “column” in the docs 
table, etc., etc.
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We’re  in  the  era  I  call
The  SQL  Strikes  Back!  

(with  apologies  to  
George  Lucas...)

58
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IT shops realize that NoSQL is useful and all, but people really, Really, REALLY love SQL. So, 
it’s making a big comeback. You can see it in Hadoop, in SQL-like APIs for some “NoSQL” 
DBs, e.g., Cassandra and MongoDB’s Javascript-based query language, as well as “NewSQL” 
DBs.
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Hadoop  owes  a  lot  of  
its  popularity  to  Hive!

59
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In large companies, the data analysts outnumber the developers by a large margin. Almost all of them know SQL 
(even if they happen to use SAS or similar tools more often…).
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Some  “NoSQL”  
databases  have  or  are  
adding  query  languages  

(e.g.,  Cassandra,  
MongoDB).

60
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Cassandra’s is relatively new and based on SQL. MongoDB has always had one, based on a Javascript DSL.
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“NewSQL”  databases  
are  bringing  NoSQL  
performance  to  the  
relaLonal  model.

61

Wednesday, December 4, 13
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• Google Spanner and F1.

• NuoDB.

• VoltDB.

Examples

62

Wednesday, December 4, 13

Spanner is the successor to BigTable. It is a globally-distributed database (consistency is maintained using the 
Paxos algo. and hardware synchronized clocks through GPS and atomic clocks!) Each table requires a primary key. 
F1 is an RDBMS built on top of it.
NuoDB is a cloud based RDBMS.
VoltDB is an example “in-memory” database, which are ideal for lots of small transactions that leverage indexing 
and rarely require full table scans.
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(So,  take  what  I  said  earlier:
  Formal  Schemas  ⬇
with  a  grain  of  salt...)

63
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MapReduce  is  not  
suitable  for  

event  processing
(“real-­‐Lme”).

64
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For typical web/enterprise systems, “real-time” is up to 100s of milliseconds, so I’m using 
the term broadly (but following common practice in this industry). True real-time systems, 
such as avionics, have much tighter constraints.
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Storm!

Wednesday, December 4, 13
Photo: Top of the AON Building, Chicago, after a Storm passed through.
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Storm  implements  
reliable,  distributed  
event  processing.

66
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http://storm-project.net/ Created by Nathan Marz, now at Twitter, who also created 
Cascalog.
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Spout

Bolt

Bolt

Bolt

BoltSpout

67
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In Storm terminology, Spouts are data sources and bolts are the event processors. There are 
facilities to support reliable message handling, various sources encapsulated in Sprouts and 
various targets of output. Distributed processing is baked in from the start.
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Spark  and  Message  
Queues  are  also  being  
used  for  distributed  
event  processing.

68
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http://storm-project.net/ Created by Nathan Marz, now at Twitter, who also created 
Cascalog.
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Databases  to  
the  Rescue?

Wednesday, December 4, 13
Databases as a real-time event processing option?

Photo: Outside my condo window, Chicago!
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  SQL  or  NoSQL  
Databases?

70

Capture events in a database 
with fast writes.

Wednesday, December 4, 13

Use a SQL database unless you need the scale and looser schema of a NoSQL database!
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  HDFS?

71

HDFS is oriented towards 
batch-mode reads and writes.

So, it’s not suitable for 
incremental updates, like 
capturing events.

Wednesday, December 4, 13

Databases are great for capturing individual records, especially in append-only scenarios.
So, storage is another important aspect of event processing.
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Hadoop  vs.  SQL?
• Hadoop

• Very flexible 
compute 
model

• “Table” scans

• Batch mode

• NoSQL / SQL

• Focused on a 
data model

• Transactional

• Event driven

Wednesday, December 4, 13

What else can we say about Hadoop vs. SQL?
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Your  current  data  
warehouse  can  only  

store  6-­‐months  of  data  
without  a  $1M  upgrade.

Problem:

Wednesday, December 4, 13

Very common scenario. Numbers roughly correspond to a situation faced by a client...
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• Pros

• Mature

• Rich SQL, 
analytics

• Mid-size data

• Cons

• Expensive - 
$/TB

• Scalability 
limits

TradiLonal  DW

Wednesday, December 4, 13

Data warehouses tend to be more scalable and a little less expensive than OLTP systems, 
which is why they are used to “warehouse” transactional data and perform analytics. However, 
their $/TB is ~10x-100x the cost on Hadoop and Hadoop scales to larger data sets.
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SQL  is  very  important  
for  data  warehouse  

applicaLons,
but  transacLons  aren’t.

Wednesday, December 4, 13

NoSQL does give you the more cost-effective storage, but SQL is very important for most DW 
applications, so your “NoSQL” store would need a powerful query tool to support common 
DW scenarios. However, DW experts usually won’t tolerate anything that isn’t SQL. Note that 
Cassandra is one of several NoSQL and “NewSQL” databases with a SQL dialect.
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• Traditional DW

+Mature

+Rich SQL, 
analytics

- Scalability

- $$/TB

• Hadoop

- Less mature

+ Improving 
SQL

+Scalable!

+Low $/TB

Wednesday, December 4, 13

Data warehouses tend to be more scalable and a little less expensive than OLTP systems, 
which is why they are used to “warehouse” transactional data and perform analytics. However, 
their $/TB is ~10x the cost on Hadoop and Hadoop scales to larger data sets.
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Hadoop  has  become  a  
popular  data  warehouse  
supplement/replacement.

Wednesday, December 4, 13

Many of my projects have offloaded an overburdened or expensive traditional data warehouse 
to Hadoop. Sometimes a wholesale replacement, but more often a supplemental strategy, at 
least for a transitional period of some duration.
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MapReduce  is  not  ideal  
for  graph  algorithms.

78

Wednesday, December 4, 13
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Graph  Systems

Wednesday, December 4, 13
A good summary presentation: http://www.slideshare.net/shatteredNirvana/pregel-a-system-for-largescale-graph-processing
Photo: Detail of the now-closed Esquire Movie Theater, a few blocks from here, Feb. 2011



Copyright  ©  2011-­‐2013,  Dean  Wampler,  All  Rights  Reserved

Google invented MapReduce,

… but MapReduce is not ideal for 
Page Rank and other graph 
algorithms. 

  Google’s  Page  Rank

80
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PageRank is the famous algorithm invented by Sergey Brin and Larry Page to index the web. It’s the foundation of 
Google’s search engine (and total world domination ;).
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• 1 MR job for each 
iteration that updates 
all n nodes/edges.

• Graph saved to disk 
after each iteration.

• ...

Why  not  MapReduce?

C

E

A

D

F

B

81

Wednesday, December 4, 13

The presentation http://www.slideshare.net/shatteredNirvana/pregel-a-system-for-largescale-graph-processing
itemizes all the major issues with using MR to implement graph algorithms.
In a nutshell, a job with a map and reduce phase is waaay to course-grained...
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• Pregel: New graph framework for 
Page Rank.

• Bulk, Synchronous Parallel (BSP).

• Graphs are first-class citizens.

• Efficiently processes updates... 

  Google’s  Pregel

82
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Pregel is the name of the river that runs through the city of Königsberg, Prussia (now called Kaliningrad, Ukraine). 
7 bridges crossed the river in the city (including to 5 to 2 islands between river branches). Leonhard Euler invented 
graph theory when we analyzed the question of whether or not you can cross all 7 bridges without retracing your 
steps (you can’t).
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• Apache Giraph.

• Apache Hama.

• Aurelius Titan.

  Open-­‐source  
AlternaLves

All are 
somewhat 
immature.

83
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http://incubator.apache.org/giraph/
http://hama.apache.org/
http://thinkaurelius.github.com/titan/
None is very mature nor has extensive commercial support.
I didn’t mention popular options like Neo4J because I’m focusing on cluster-oriented tools.



Copyright  ©  2011-­‐2013,  Dean  Wampler,  All  Rights  Reserved

SomeLmes,  you  need  a  
specialized  tool.

84

Wednesday, December 4, 13
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Purpose-­‐built  Tools

Wednesday, December 4, 13
I see that a trend where completely generic tooling is giving way to more “purpose-built” tooling...

Photo: Buildings along the Chicago River.
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New  Hadoop  
file  formats,  opLmize  
access  (e.g.,  Parquet).  

86

New  compute  engines
(e.g.,  Impala,  Presto).

Wednesday, December 4, 13

In the quest for ever better performance over massive datasets, the generic file formats in Hadoop and MapReduce 
are hitting a performance wall (although not everyone agrees). Parquet is column oriented & contains the data 
schema, like Thrift, Avro, and Protobuf. It will be exploited to optimize queries over massive data sets, much 
faster than the older file formats. Similarly, Impala is purpose built optimized query engine (that relies on 
Parquet).
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Example  of  solving  a  
specific  problem  with  a  

custom  soluLon.

Lucene  with  Solr
and  ElasLcSearch

Wednesday, December 4, 13

This is an example of a specific problem domain and focused tools to solve it. 
http://www.elasticsearch.org/, http://lucene.apache.org/solr/
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MapReduce  is  not  
iteraLve,  so  Machine  
Learning  algorithms  
perform  poorly.

88

Wednesday, December 4, 13
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Machine
Learning

Wednesday, December 4, 13

ML includes recommendation engines (e.g., the way Netflix recommends movies to you or Amazon recommends 
products), classification (e.g., SPAM classifiers, character and image recognition), and clustering. Other specialized 
examples include text mining and other forms of natural language processing (NLP).

Photo: Two famous 19th Century Buildings in Chicago.
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• Recommendations: Netflix 
movies, Amazon products, ... 

• Classification: SPAM filters, 
character recognition, ... 

• Clustering: Find groups in social 
networks, ...

Wednesday, December 4, 13
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ML  algorithms
tend  to  be  iteraLve,

but  they  can  be  force  fit  
into  MapReduce.

Wednesday, December 4, 13

Many ML algorithms iterate to a solution.
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• Mahout: MapReduce algorithms.

• Pattern: PMML on Cascading.

• Spark: More flexible compute 
model.

  Machine  Learning  Tools

92
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• Train ML models with Hadoop.

• Store model in a database.

• Predict based on user events.

Common  Workflow

93
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Since Hadoop is not suitable for event handling, it’s common to train prediction, 
recommendation, etc. models with MapReduce, but store the model in a fast store, so the 
model can be used in real time to make predictions, etc.
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• Languages for Probabilistic 
Graphical Models??

• Bayesian Networks.

• Markov Chains.

• ...

Emerging:  ProbabilisLc  
Programming

94
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http://en.wikipedia.org/wiki/Bayesian_network
http://en.wikipedia.org/wiki/Markov_chain
PGMs are essential tools for many machine learning and artificial intelligence systems. But they require some 
expertise to build, both mastery of the PGM concepts and implementing them in conventional programming 
languages There is growing interest in designing languages that encapsulate this complexity.
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So,  where  are  we??

Wednesday, December 4, 13
Now that we have cataloged some issues and solutions, let’s recap and look forward.
Photo: Lake Michigan, near Ohio Street Beach, Chicago, Feb. 2011.
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Hadoop  MapReduce  is  the  
Enterprise  Java  Beans

  of  our  Lme.

Wednesday, December 4, 13
I worked with EJBs a decade ago. The framework was completely invasive into your business logic. There were too many configuration options in 
XML files. The framework “paradigm” was a poor fit for most problems (like soft real time systems and most algorithms beyond Word Count). 
Internally, EJB implementations were inefficient and hard to optimize, because they relied on poorly considered object boundaries that muddled 
more natural boundaries. (I’ve argued in other presentations and my “FP for Java Devs” book that OOP is a poor modularity tool…) 
The fact is, Hadoop reminds me of EJBs in almost every way. It’s a 1st generation solution that mostly works okay and people do get work done 
with it, but just as the Spring Framework brought an essential rethinking to Enterprise Java, I think there is an essential rethink that needs to 
happen in Big Data, specifically around Hadoop. The functional programming community, is well positioned to create it...
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MapReduce
  is  waning

Wednesday, December 4, 13

We’ve seen a lot of issues with MapReduce. Already, alternatives are being developed, either general options, like 
Spark and Storm, or special-purpose built replacements, like Impala. Let’s consider other options...
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Emerging  replacements
are  based  on

  FuncLonal  Languages...
import com.twitter.scalding._

class WordCountJob(args: Args) extends Job(args) {
  TextLine( args("input") )
    .read
    .flatMap('line -> 'word) {
      line: String => 
        line.trim.toLowerCase
            .split("\\W+") 
    }
    .groupBy('word) { 
      group => group.size('count) }
  }
  .write(Tsv(args("output")))
}

Wednesday, December 4, 13

FP is such a natural fit for the problem that any attempts to build big data systems without it will be handicapped 
and probably fail.
Let’s consider other MapReduce options...
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...  and  SQL,
which  is  roaring  back!

CREATE TABLE docs (line STRING);
LOAD DATA INPATH '/path/to/docs' 
INTO TABLE docs;

CREATE TABLE word_counts AS
SELECT word, count(1) AS count FROM
(SELECT explode(split(line, '\W+')) 
 AS word FROM docs) w
GROUP BY word
ORDER BY word;

Wednesday, December 4, 13

FP is such a natural fit for the problem that any attempts to build big data systems without it will be handicapped 
and probably fail.
Let’s consider other MapReduce options...
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Why  are  Scala,  Clojure,  
and  SQL  soluLons  so  

concise  and  appealing?

100
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Big  Data  is  
MathemaLcs.  

∴  FuncLonal  Languages  
are  the  best  tools.

101

Wednesday, December 4, 13
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Concurrency  
has  been  called  

the  killer  app  for  FP.

Big  Data  is  a
bigger  killer  app,  IMHO.

102
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I think big data may drive FP adoption just as much as concurrency concerns, if not more so. 
Why? Because I suspect more developers will need to get “good” at data, vs. good at 
concurrency.
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QuesLons?

CodeMesh  2013,  December  4
dean.wampler@typesafe.com
@deanwampler  
polyglotprogramming.com/talks
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All pictures Copyright © Dean Wampler, 2011-2013, All Rights Reserved. All other content is free to use, but 
attribution is requested.
Photo: Building in fog on Michigan Avenue, Chicago.
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