| FeosEvewhere Cee drowcle Awlsions
FUNCTIONAL ALGEBRA BY EXAMPLE

Fi gure: Credit hitp://www.flickr.com/photos/slambo_42

Susan Potter @SusanPotter
CodeMesh December 2013

FACES EVERYWHERE

OBVIOUS FACE

Faces Everywhere Code sbt console Applications

LESS OBVIOUS FACE

Faces Everywhere Code sbt console Applications

SQUINT FACE

Faces Everywhere Code sbt console Applications

MAYBE FACE

_FecssEverwhers Cee rowcle Awlsions
OO PATTERNS VS FP ABSTRACTIONS

— More (Subjective -> Objective)
— More (Ambiguous -> Precise)

— "Fluffy" Interfaces -> Generic Functions

_FecssEverwhers Cee rowcle Awlsions
OO PATTERNS VS FP ABSTRACTIONS

— More (Subjective -> Obijective)
— More (Ambiguous -> Precise)

— "Fluffy" Interfaces -> Generic Functions

_FecssEverwhers Cee rowcle Awlsions
OO PATTERNS VS FP ABSTRACTIONS

— More (Subjective -> Obijective)
— More (Ambiguous -> Precise)

— "Fluffy" Interfaces -> Generic Functions

LAYING BRICKS

| FaossBewnes Coe swoomole Aplion
WARNING

— Abstract Algebra -> (Continuous, Infinite)

— Real World -> usually (Discrete, Finite)

| FaossBewnes Coe swoomole Aplion
WARNING

— Abstract Algebra -> (Continuous, Infinite)

— Real World -> usually (Discrete, Finite)

CODE

| FeossBenwnos G woowole Aplion
EXAMPLE UNIX PIPE

1+ find . -name "*.rb" \
2 | xargs egrep "#.*7TODO:" \
3 | we -1

Character-based, through file descriptors

_FeosEiewee Oxe drowcle Awlcsions
EXAMPLE FUNCTION COMPOSITION

1 (length . mapToUpper . sanitize) input

Value based, through functions

_FeosEiewee Oxe drowcle Awlcsions
VALUING VALUES IN REAL WORLD

1 sealed trait PossiblyMaybe [+A]

> final case class Somefink[A](a: A) extends
PossiblyMaybe [A]

s final case object Nowt extends PossiblyMaybe [
Nothing]

s object PossiblyMaybeOps {
6 def noneDefault[A] (pm: PossiblyMaybe[A]) (a:
A): A = pm match {

7 case Somefink(x) => x
8 case _ => a

9 }

10 }

Note _ in second match, caters for nulls

| FeossBenwnos G woowole Aplion
FUNCTOR

1 class Functor f where
2 fmap (a »+ b)) = f a~+fb

SBT CONSOLE

| FeossBenwnes O swoemele Aplion
CONTRAVARIANT FUNCTOR

1 class Contravariant f where
2 contramap (b =+ a) - f a -+ f b

| FeossBenwnes O swoemele Aplion
BI FUNCTOR

1 class Bifunctor f where
2 bimap (a + c¢) » (b +d) » f ab-=+f cd

| FeossBenwnes O swoemele Aplion
PRO FUNCTOR

1 class Profunctor f where
2 dimap (¢ »+ a) = (b +d) - f ab-~+f cd

_FeosEvevere Cee drowsls Awlcsions
SAME TYPE, MANY INTERFACES

A type defined as a Monad can also be

— An Applicative
— A Functor

— And possibly many others :)

_FeosEvevere Cee drowsls Awlcsions
SAME TYPE, MANY INTERFACES

A type defined as a Monad can also be

— An Applicative
— A Functor

— And possibly many others :)

_FeosEvevere Cee drowsls Awlcsions
SAME TYPE, MANY INTERFACES

A type defined as a Monad can also be

— An Applicative
— A Functor

— And possibly many others :)

APPLICATIONS

| FecesBenwnee G wwoowol Appleaons
KNOWN USES

— Monoids: Accumulators are everywhere, almost

— Functors: Lots of places (endo, contravariant, bi, pro)
— Monads: Effects, "Linear Happy Path", and more

— Applicatives: "validations", and more

— More ... e.g. Arrows, Zippers, Lenses, etc.

| FeoosEvevhee Oce roowcie Awlsions
THINKING ALGEBRAICALLY

— Properties: property based testing: quickcheck, scalacheck

— Data Types: start closed, extend using "type classes",
dependent types, etc when relevant

— Abstractions: build small building blocks, use motar to build
solid walls

— Dist Systems: using algebraic abstractions, properties to
build more useful distributed systems

Faces Everywhere Code sbt console Applications

ROYAL FAIL

http://www.flickr.com/photos/dadavidov/

25

Faces Everywhere Code sbt console Applications

QUESTIONS

Questions?

26

	Faces Everywhere
	Code
	sbt console
	Applications

