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— "Fluffy" Interfaces -> Generic Functions
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EXAMPLE UNIX PIPE

1+ find . -name "*.rb" \
2 | xargs egrep "#.*7TODO:" \
3 | we -1

Character-based, through file descriptors
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EXAMPLE FUNCTION COMPOSITION

1 (length . mapToUpper . sanitize) input

Value based, through functions
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VALUING VALUES IN REAL WORLD

1 sealed trait PossiblyMaybe [+A]

> final case class Somefink[A](a: A) extends
PossiblyMaybe [A]

s final case object Nowt extends PossiblyMaybe [
Nothing]

s object PossiblyMaybeOps {
6 def noneDefault[A] (pm: PossiblyMaybe[A]) (a:
A): A = pm match {

7 case Somefink(x) => x
8 case _ => a

9 }

10 }

Note _ in second match, caters for nulls
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FUNCTOR

1 class Functor f where
2 fmap (a »+ b)) = f a~+fb
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CONTRAVARIANT FUNCTOR

1 class Contravariant f where
2 contramap (b =+ a) - f a -+ f b
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BI FUNCTOR

1 class Bifunctor f where
2 bimap (a + c¢) » (b +d) » f ab-=+f cd
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PRO FUNCTOR

1 class Profunctor f where
2 dimap (¢ »+ a) = (b +d) - f ab-~+f cd
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— A Functor
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KNOWN USES

— Monoids: Accumulators are everywhere, almost

— Functors: Lots of places (endo, contravariant, bi, pro)
— Monads: Effects, "Linear Happy Path", and more

— Applicatives: "validations", and more

— More ... e.g. Arrows, Zippers, Lenses, etc.
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THINKING ALGEBRAICALLY

— Properties: property based testing: quickcheck, scalacheck

— Data Types: start closed, extend using "type classes",
dependent types, etc when relevant

— Abstractions: build small building blocks, use motar to build
solid walls

— Dist Systems: using algebraic abstractions, properties to
build more useful distributed systems
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ROYAL FAIL

http://www.flickr.com/photos/dadavidov/
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QUESTIONS

Questions?
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