
Game of Threads
You spawn or you die

Torben Hoffmann
CTO, Erlang Solutions

torben.hoffmann@erlang-solutions.com
@LeHoff

Thursday, 5 December 2013 W

mailto:torben.hoffmann@erlang-solutions.com
mailto:torben.hoffmann@erlang-solutions.com

Technology Adoptation Lifecyle

Thursday, 5 December 2013 W

Technology Adoptation Lifecyle

Technology enthusiasts

Thursday, 5 December 2013 W

Technology Adoptation Lifecyle

Technology enthusiasts

Visionaries

Thursday, 5 December 2013 W

Technology Adoptation Lifecyle

Technology enthusiasts

Visionaries

Pragmatists

Thursday, 5 December 2013 W

Technology Adoptation Lifecyle

Technology enthusiasts

Visionaries

Pragmatists
Conservatives

Thursday, 5 December 2013 W

Technology Adoptation Lifecyle

Technology enthusiasts

Visionaries

Pragmatists
Conservatives

Laggards

Thursday, 5 December 2013 W

Technology Adoptation Lifecyle

Technology enthusiasts

Visionaries

Pragmatists
Conservatives

Laggards

Crack

Thursday, 5 December 2013 W

Technology Adoptation Lifecyle

Technology enthusiasts

Visionaries

Pragmatists
Conservatives

Laggards

Crack

Crack

Thursday, 5 December 2013 W

Technology Adoptation Lifecyle

Technology enthusiasts

Visionaries

Pragmatists
Conservatives

Laggards

Crack

CrackChasm

Thursday, 5 December 2013 W

Free Lunch

Source: www.educationnews.orgSource: www.educationnews.org

Thursday, 5 December 2013 W

http://www.educationnews.org
http://www.educationnews.org

Free Lunch

Source: www.educationnews.orgSource: www.educationnews.org

Thursday, 5 December 2013 W

http://www.educationnews.org
http://www.educationnews.org

Free Lunch

 We all love the concept

Source: www.educationnews.orgSource: www.educationnews.org

Thursday, 5 December 2013 W

http://www.educationnews.org
http://www.educationnews.org

Free Lunch

 We all love the concept

 Experience rules it out

Source: www.educationnews.orgSource: www.educationnews.org

Thursday, 5 December 2013 W

http://www.educationnews.org
http://www.educationnews.org

Free Lunch

 We all love the concept

 Experience rules it out

Source: www.educationnews.orgSource: www.educationnews.org

Thursday, 5 December 2013 W

http://www.educationnews.org
http://www.educationnews.org

Paying for Lunch

Source: www.surreyartists.co.uk

Source: www.tidensnyheder.dk

Thursday, 5 December 2013 W

http://www.surreyartists.co.uk
http://www.surreyartists.co.uk
http://www.surreyartists.co.uk
http://www.surreyartists.co.uk

Paying for Lunch

 Unavoidable, but the price varies

Source: www.surreyartists.co.uk

Source: www.tidensnyheder.dk

Thursday, 5 December 2013 W

http://www.surreyartists.co.uk
http://www.surreyartists.co.uk
http://www.surreyartists.co.uk
http://www.surreyartists.co.uk

After Lunch

Thursday, 5 December 2013 W

After Lunch

 Sometimes you have to
pay an extra price

Thursday, 5 December 2013 W

Software Lunch

 Silver bullet (n)

 1. software slang for free lunch

 2. used to kill vampires

 Drives the creation of new languages

Thursday, 5 December 2013 W

Context

Software

Legacy

Hardware

Requirements

Competition

Thursday, 5 December 2013 W

Context

Software

Legacy

Hardware

Requirements

Competition

Context changes all the time

Thursday, 5 December 2013 W

Context

Software

Legacy

Hardware

Requirements

Competition

Context changes all the time

Software has to follow suit

Thursday, 5 December 2013 W

Context

Software

Legacy

Hardware

Requirements

Competition

Context changes all the time

Software has to follow suit

Each context is a market segment to conquer

Thursday, 5 December 2013 W

Right tool for the job

Thursday, 5 December 2013 W

Right tool for the job

 Nice concept

Thursday, 5 December 2013 W

Right tool for the job

 Nice concept

 How many tools can one use?

Thursday, 5 December 2013 W

Right tool for the job

 Nice concept

 How many tools can one use?

 Effectively?

Thursday, 5 December 2013 W

Right tool for the job

 Nice concept

 How many tools can one use?

 Effectively?

 Learning cost

Thursday, 5 December 2013 W

Right tool for the job

 Nice concept

 How many tools can one use?

 Effectively?

 Learning cost

 Switching cost

Thursday, 5 December 2013 W

Right tool for the job

 Nice concept

 How many tools can one use?

 Effectively?

 Learning cost

 Switching cost

 Pain = willingness to change

Thursday, 5 December 2013 W

Right tool for the job

 Nice concept

 How many tools can one use?

 Effectively?

 Learning cost

 Switching cost

 Pain = willingness to change

Thursday, 5 December 2013 W

Erlang’s domain

Thursday, 5 December 2013 W

Erlang’s domain

 Concurrency

Thursday, 5 December 2013 W

Erlang’s domain

 Concurrency

 Low latency

Thursday, 5 December 2013 W

Erlang’s domain

 Concurrency

 Low latency

 Resilience

Thursday, 5 December 2013 W

Erlang’s domain

 Concurrency

 Low latency

 Resilience

When it fits:
High productivity
Short time-to-market

Thursday, 5 December 2013 W

Erlang’s domain

 Concurrency

 Low latency

 Resilience

 But not perfect for everything :-(

When it fits:
High productivity
Short time-to-market

Thursday, 5 December 2013 W

Why ICE?

Thursday, 5 December 2013 W

Why ICE?

 Erlang VM designed for concurrency

Thursday, 5 December 2013 W

Why ICE?

 Erlang VM designed for concurrency

 Parallelism an afterthought

Thursday, 5 December 2013 W

Why ICE?

 Erlang VM designed for concurrency

 Parallelism an afterthought

 No low-level optimisations

Thursday, 5 December 2013 W

Why ICE?

 Erlang VM designed for concurrency

 Parallelism an afterthought

 No low-level optimisations

Thursday, 5 December 2013 W

How ICE?

Thursday, 5 December 2013 W

How ICE?

 Declarative programs with latent parallelism

Thursday, 5 December 2013 W

How ICE?

 Declarative programs with latent parallelism

Based on TransLucid

Thursday, 5 December 2013 W

How ICE?

 Declarative programs with latent parallelism

Based on TransLucid

 Tweak data structures to get scalable
performance

Thursday, 5 December 2013 W

How ICE?

 Declarative programs with latent parallelism

Based on TransLucid

 Tweak data structures to get scalable
performance

 Built on top of the Erlang VM

Thursday, 5 December 2013 W

Programming

Imperative Declarative

Sequential

Implicit
parallelism

Explicit
parallelism

Thursday, 5 December 2013 W

Programming

Imperative Declarative

Sequential

Implicit
parallelism

Explicit
parallelism

C

Thursday, 5 December 2013 W

Programming

Imperative Declarative

Sequential

Implicit
parallelism

Explicit
parallelism

SML, OCamlC

Thursday, 5 December 2013 W

Programming

Imperative Declarative

Sequential

Implicit
parallelism

Explicit
parallelism

SML, OCaml

pthread, CILK,
OpenMP

C

Thursday, 5 December 2013 W

Programming

Imperative Declarative

Sequential

Implicit
parallelism

Explicit
parallelism

SML, OCaml

Erlang,
Parallell Haskel,
skel (patterns)

pthread, CILK,
OpenMP

C

Thursday, 5 December 2013 W

Programming

Imperative Declarative

Sequential

Implicit
parallelism

Explicit
parallelism

ICE

SML, OCaml

Erlang,
Parallell Haskel,
skel (patterns)

pthread, CILK,
OpenMP

C

Thursday, 5 December 2013 W

Thursday, 5 December 2013 W

ParaPhrase

Thursday, 5 December 2013 W

ParaPhrase

 EU funded FP7 project

Thursday, 5 December 2013 W

ParaPhrase

 EU funded FP7 project

 Parallelism on heterogeneous platforms

Thursday, 5 December 2013 W

ParaPhrase

 EU funded FP7 project

 Parallelism on heterogeneous platforms

 Pattern based approach

Thursday, 5 December 2013 W

ParaPhrase

 EU funded FP7 project

 Parallelism on heterogeneous platforms

 Pattern based approach

 Refactor the parallel patterns in

Thursday, 5 December 2013 W

ParaPhrase Example

Thursday, 5 December 2013 W

ParaPhrase Example
f(g(X))

Thursday, 5 December 2013 W

ParaPhrase Example
f(g(X))
becomes

Thursday, 5 December 2013 W

ParaPhrase Example
f(g(X))

skel:run(
 [{farm, [{seq, fun ?MODULE:g/1}], 24},
 {farm, [{seq, fun ?MODULE:f/1}], 24}],
 X])

becomes

Thursday, 5 December 2013 W

ParaPhrase Example

 Productivity: hours instead of days

f(g(X))

skel:run(
 [{farm, [{seq, fun ?MODULE:g/1}], 24},
 {farm, [{seq, fun ?MODULE:f/1}], 24}],
 X])

becomes

Thursday, 5 December 2013 W

Thursday, 5 December 2013 W

I want more.

Thursday, 5 December 2013 W

I want more.

I know about wanting more.
I invented the concept.

The question is how much more.

Thursday, 5 December 2013 W

Intensionality

Thursday, 5 December 2013 W

Intensionality

 Extreme version of declarative programming

 Higher-level than functional programming

 Focus on composition in a math like way

 Extensional data needed to give the
intensional program something concrete to
work on

Thursday, 5 December 2013 W

Elements

Thursday, 5 December 2013 W

Elements

 Intensional language (parser and evaluator)

Thursday, 5 December 2013 W

Elements

 Intensional language (parser and evaluator)

 Extensional specification component

Thursday, 5 December 2013 W

Elements

 Intensional language (parser and evaluator)

 Extensional specification component

 Process abstraction & scheduling mechanism

Thursday, 5 December 2013 W

Elements

 Intensional language (parser and evaluator)

 Extensional specification component

 Process abstraction & scheduling mechanism

Thursday, 5 December 2013 W

Core Idea

Thursday, 5 December 2013 W

Core Idea

 Demands spark off parallel computations

Thursday, 5 December 2013 W

Glue

Intensional

Extensional

Thursday, 5 December 2013 W

Glue

Intensional

Extensional

Erlang

Thursday, 5 December 2013 W

Glue

Intensional

Extensional

Erlang

C/asm

Thursday, 5 December 2013 W

Glue

Intensional

Extensional

Erlang

C/asm

var C = A + B

Thursday, 5 December 2013 W

Glue

Intensional

Extensional

Erlang

C/asm

var C = A + B

{A, float, 512, 64}

Thursday, 5 December 2013 W

Variables in ICE
var A = 42 + 2*#.x + #.y

Thursday, 5 December 2013 W

Variables in ICE
var A = 42 + 2*#.x + #.y
Specifies this 2d thingy

Thursday, 5 December 2013 W

Variables in ICE
var A = 42 + 2*#.x + #.y
Specifies this 2d thingy

space, then these subexpressions give:

‘42’
42

‘ + ’
+

‘2’
2

‘ ⇤ ’
⇥

‘#.x’ 0 1 2 3
#.x
!

0 1 2 3 · · ·

‘#.y’
0 0
1 1
2 2
3 3

#.y
#

...

Subexpressions ‘42’, ‘2’, ‘ + ’ and ‘ ⇤ ’ all define zero-dimensional entities; we say that the rank
of each is ; (the empty set). It is important to remember that each expression defines a whole
array, all at once. So the expression ‘42’ defines an array whose only entry is the value 42. One
should not think of this as a two-dimensional one-by-one array, or even a one-dimensional array
with one entry, because that is not what is going on here. The array truly is zero-dimensional,
and holds one value, it does not have a number of cells holding di↵erent values, or even a number
of cells all holding 42. Hence, the only value that can be retrieved from the array is the one value
that defines it. We cannot emphasize this point enough, because it is critical to understanding the
remainder of the text. Without understanding that every expression defines an array, any further
attempt at understanding will be fraught with di�culty.

Subexpressions ‘#.x’ and ‘#.y’ are 1-dimensional arrays: ‘#.x’ has rank {x}, which means that
it is an array that has entries in the x direction. In fact, it is an array whose entries are simply
the index of the entry, in the x direction. Again, this point is key to understanding TL: when
specifying a cell in an intension, one must give, for each dimension in the rank of the intension,
both the relevant dimension (the direction) and its ordinate. Similarly, ‘#.y’ has rank {y} and is
an array whose entries are the index of the entry in the y direction.

For subexpression ‘2 ⇤#.x’, since subexpressions ‘2’ and ‘ ⇤ ’ are of rank ;, they are naturally
extended to rank {x}, and the resulting array is the multiplication of each pair of corresponding
entries from the arrays ‘2’ and ‘#.x’.

‘2’ 0 1 2
#.x
!

2 2 2 · · ·

‘ ⇤ ’ 0 1 2
#.x
!

⇥ ⇥ ⇥ · · ·

‘2 ⇤#.x’ 0 1 2
#.x
!

0 2 4 · · ·

For expression ‘42 + (2 ⇤#.x) +#.y’, the subexpressions ‘42’ and ‘ + ’ (both rank ;), ‘2 ⇤#.x’
(rank {x}), and ‘#.y’ (rank {y}) are all extended to rank {x, y}, and so the value of ‘A’ is:

‘A’ 0 1 2 3
#.x
!

0 42 44 46 48 · · ·

1 43 45 47 49 · · ·

2 44 46 48 50 · · ·

3 45 47 49 51 · · ·

#.y
#

...
...

...
...

. . .

Looking at example ‘A’, one could easily get the impression that ordinates must always be
natural numbers. This is not the case. Here we show an intension ‘L’, without showing how it
might be defined, giving the textual representation of the integers in several languages, varying in
dimensions x and lang:

‘L’
#.x
 �2 �1 0 1 2

#.x
!

EN · · · minus two minus two zero one two · · ·

ES · · · menos dos menos uno cero uno dos · · ·

FR · · · moins deux moins un zéro un deux · · ·

#.lang
#

...
...

...
...

...
...

. . .

3

Thursday, 5 December 2013 W

Variables in ICE
var A = 42 + 2*#.x + #.y
Specifies this 2d thingy

space, then these subexpressions give:

‘42’
42

‘ + ’
+

‘2’
2

‘ ⇤ ’
⇥

‘#.x’ 0 1 2 3
#.x
!

0 1 2 3 · · ·

‘#.y’
0 0
1 1
2 2
3 3

#.y
#

...

Subexpressions ‘42’, ‘2’, ‘ + ’ and ‘ ⇤ ’ all define zero-dimensional entities; we say that the rank
of each is ; (the empty set). It is important to remember that each expression defines a whole
array, all at once. So the expression ‘42’ defines an array whose only entry is the value 42. One
should not think of this as a two-dimensional one-by-one array, or even a one-dimensional array
with one entry, because that is not what is going on here. The array truly is zero-dimensional,
and holds one value, it does not have a number of cells holding di↵erent values, or even a number
of cells all holding 42. Hence, the only value that can be retrieved from the array is the one value
that defines it. We cannot emphasize this point enough, because it is critical to understanding the
remainder of the text. Without understanding that every expression defines an array, any further
attempt at understanding will be fraught with di�culty.

Subexpressions ‘#.x’ and ‘#.y’ are 1-dimensional arrays: ‘#.x’ has rank {x}, which means that
it is an array that has entries in the x direction. In fact, it is an array whose entries are simply
the index of the entry, in the x direction. Again, this point is key to understanding TL: when
specifying a cell in an intension, one must give, for each dimension in the rank of the intension,
both the relevant dimension (the direction) and its ordinate. Similarly, ‘#.y’ has rank {y} and is
an array whose entries are the index of the entry in the y direction.

For subexpression ‘2 ⇤#.x’, since subexpressions ‘2’ and ‘ ⇤ ’ are of rank ;, they are naturally
extended to rank {x}, and the resulting array is the multiplication of each pair of corresponding
entries from the arrays ‘2’ and ‘#.x’.

‘2’ 0 1 2
#.x
!

2 2 2 · · ·

‘ ⇤ ’ 0 1 2
#.x
!

⇥ ⇥ ⇥ · · ·

‘2 ⇤#.x’ 0 1 2
#.x
!

0 2 4 · · ·

For expression ‘42 + (2 ⇤#.x) +#.y’, the subexpressions ‘42’ and ‘ + ’ (both rank ;), ‘2 ⇤#.x’
(rank {x}), and ‘#.y’ (rank {y}) are all extended to rank {x, y}, and so the value of ‘A’ is:

‘A’ 0 1 2 3
#.x
!

0 42 44 46 48 · · ·

1 43 45 47 49 · · ·

2 44 46 48 50 · · ·

3 45 47 49 51 · · ·

#.y
#

...
...

...
...

. . .

Looking at example ‘A’, one could easily get the impression that ordinates must always be
natural numbers. This is not the case. Here we show an intension ‘L’, without showing how it
might be defined, giving the textual representation of the integers in several languages, varying in
dimensions x and lang:

‘L’
#.x
 �2 �1 0 1 2

#.x
!

EN · · · minus two minus two zero one two · · ·

ES · · · menos dos menos uno cero uno dos · · ·

FR · · · moins deux moins un zéro un deux · · ·

#.lang
#

...
...

...
...

...
...

. . .

3

Infinite table = extensional view of our intension

Thursday, 5 December 2013 W

Demands and Context
A @ [x <- 3, y <- 5]

“demand for the value of A
at the context x=3 and y=5”

Thursday, 5 December 2013 W

Examples

Thursday, 5 December 2013 W

Fibonacci

var Fib = if #.n <= 1 then
#.n

else
Fib @ [n<- #.n-1] +
Fib @ [n<- #.n-2]

fi

Equation:

Thursday, 5 December 2013 W

Fibonacci

var Fib = if #.n <= 1 then
#.n

else
Fib @ [n<- #.n-1] +
Fib @ [n<- #.n-2]

fi

Equation:

Demand

Thursday, 5 December 2013 W

Fibonacci
Demand:

Thursday, 5 December 2013 W

Fibonacci
Demand:

fib @ [n <- 5]

Thursday, 5 December 2013 W

Fibonacci
Demand:

fib @ [n <- 5]

fib @ [n <- 4]

Thursday, 5 December 2013 W

Fibonacci
Demand:

fib @ [n <- 5]

fib @ [n <- 4] fib @ [n <- 3]

Thursday, 5 December 2013 W

Fibonacci
Demand:

fib @ [n <- 5]

fib @ [n <- 4] fib @ [n <- 3]

Thursday, 5 December 2013 W

Fibonacci
Demand:

fib @ [n <- 5]

fib @ [n <- 4] fib @ [n <- 3]

fib @ [n <- 2]

Thursday, 5 December 2013 W

Fibonacci
Demand:

fib @ [n <- 5]

fib @ [n <- 4] fib @ [n <- 3]

fib @ [n <- 2] fib @ [n <- 1]

Thursday, 5 December 2013 W

Fibonacci
Demand:

fib @ [n <- 5]

fib @ [n <- 4] fib @ [n <- 3]

fib @ [n <- 2] fib @ [n <- 1]

fib @ [n <- 0]

Thursday, 5 December 2013 W

Fibonacci
Demand:

fib @ [n <- 5]

fib @ [n <- 4] fib @ [n <- 3]

fib @ [n <- 2] fib @ [n <- 1]

fib @ [n <- 0]

Thursday, 5 December 2013 W

Fibonacci
Demand:

fib @ [n <- 5]

fib @ [n <- 4] fib @ [n <- 3]

fib @ [n <- 2] fib @ [n <- 1]

fib @ [n <- 0]

Thursday, 5 December 2013 W

Fibonacci
Demand:

fib @ [n <- 5]

fib @ [n <- 4] fib @ [n <- 3]

fib @ [n <- 2] fib @ [n <- 1]

fib @ [n <- 0]

0

Thursday, 5 December 2013 W

Fibonacci
Demand:

fib @ [n <- 5]

fib @ [n <- 4] fib @ [n <- 3]

fib @ [n <- 2] fib @ [n <- 1]

fib @ [n <- 0]

0

1

Thursday, 5 December 2013 W

LaPlacian Relaxation

electrode
electrode

What is the field strength here?

Thursday, 5 December 2013 W

LaPlacian Relaxation

S where

var S = if ELECTRODE then POTENTIAL

 else fby.t 0 (avg S)

 fi

fun avg A = (prev.x A + next.x A +

 prev.y A + next.y A) / 4

Equation:

Thursday, 5 December 2013 W

LaPlacian Relaxation
Electrode at (3,4)
with potential 5

Thursday, 5 December 2013 W

LaPlacian Relaxation
Electrode at (3,4)
with potential 5

S@[x<-4, y<-4, t<-2]

Thursday, 5 December 2013 W

LaPlacian Relaxation
Electrode at (3,4)
with potential 5

S@[x<-4, y<-4, t<-2]

(avg S)@[x<-4, y<-4, t<-1]

Thursday, 5 December 2013 W

LaPlacian Relaxation
Electrode at (3,4)
with potential 5

S@[x<-4, y<-4, t<-2]

(avg S)@[x<-4, y<-4, t<-1]

(S@[x<-3, y<-4, t<-1]+ S@[x<-5, y<-4, t<-1]+
S@[x<-4, y<-3, t<-1]+ S@[x<-4, y<-5, t<-1])/4

Thursday, 5 December 2013 W

LaPlacian Relaxation
Electrode at (3,4)
with potential 5

S@[x<-4, y<-4, t<-2]

(avg S)@[x<-4, y<-4, t<-1]

(S@[x<-3, y<-4, t<-1]+ S@[x<-5, y<-4, t<-1]+
S@[x<-4, y<-3, t<-1]+ S@[x<-4, y<-5, t<-1])/4

(5 + (avg S)@[x<-5, y<-4, t<-0]+
(avg S)@[x<-4, y<-3, t<-0]+(avg S)@[x<-4, y<-5, t<-0])/4

Thursday, 5 December 2013 W

LaPlacian Relaxation
Electrode at (3,4)
with potential 5

S@[x<-4, y<-4, t<-2]

(avg S)@[x<-4, y<-4, t<-1]

(S@[x<-3, y<-4, t<-1]+ S@[x<-5, y<-4, t<-1]+
S@[x<-4, y<-3, t<-1]+ S@[x<-4, y<-5, t<-1])/4

(5 + (avg S)@[x<-5, y<-4, t<-0]+
(avg S)@[x<-4, y<-3, t<-0]+(avg S)@[x<-4, y<-5, t<-0])/4

(5 + (S@[x<-4, y<-4, t<-0] +
S@[x<-6,y<-4,t<-0]+S@[x<-5,y<-3,t<-0]+S@[x<-5,y<-5,t<-0])

)/4+...)/4

Thursday, 5 December 2013 W

LaPlacian Relaxation
Electrode at (3,4)
with potential 5

S@[x<-4, y<-4, t<-2]

(avg S)@[x<-4, y<-4, t<-1]

(S@[x<-3, y<-4, t<-1]+ S@[x<-5, y<-4, t<-1]+
S@[x<-4, y<-3, t<-1]+ S@[x<-4, y<-5, t<-1])/4

(5 + (avg S)@[x<-5, y<-4, t<-0]+
(avg S)@[x<-4, y<-3, t<-0]+(avg S)@[x<-4, y<-5, t<-0])/4

(5 + (S@[x<-4, y<-4, t<-0] +
S@[x<-6,y<-4,t<-0]+S@[x<-5,y<-3,t<-0]+S@[x<-5,y<-5,t<-0])

)/4+...)/4

(5 + (0+0+0+0)/4+...)/4

Thursday, 5 December 2013 W

LaPlacian Relaxation

2

Thursday, 5 December 2013 W

LaPlacian Relaxation

2 11
1

1

Thursday, 5 December 2013 W

LaPlacian Relaxation

2 11
1

1
0

0

0 0

Thursday, 5 December 2013 W

LaPlacian Relaxation

2 11
1

1

00

0

0 0

0

Thursday, 5 December 2013 W

LaPlacian Relaxation

2 11
1

1

00

0

0 0

0
00

Thursday, 5 December 2013 W

LaPlacian Relaxation

2 11
1

1

00

0

0 0

0
00

0

Thursday, 5 December 2013 W

Matrix multiplication

Source: rosalind.info

Thursday, 5 December 2013 W

Matrix mult in ICE
fun multiply.d_r.d_c.k X Y = W
 where
 dim d <- 0
 var Xd = rotate.d_c.d X
 var Yd = rotate.d_r.d Y
 var Z = Xd * Yd
 var W = sum.d.k Z
 end

Thursday, 5 December 2013 W

Matrix mult in ICE
fun multiply.d_r.d_c.k X Y = W
 where
 dim d <- 0
 var Xd = rotate.d_c.d X
 var Yd = rotate.d_r.d Y
 var Z = Xd * Yd
 var W = sum.d.k Z
 end
fun sum.d_x.n X = Y @ [d_x <- n]
 where
 var Y = fby.d_x 0 (X + Y)
 end

Thursday, 5 December 2013 W

Status

Thursday, 5 December 2013 W

Status

 Scanner and parser works

Thursday, 5 December 2013 W

Status

 Scanner and parser works

 Evaluator near alpha level

Thursday, 5 December 2013 W

Status

 Scanner and parser works

 Evaluator near alpha level

 Cache at alpha level

Thursday, 5 December 2013 W

Next Steps

 Add I/O to ease big examples

 Increase usability through use cases

 Options pricer and your cool case!

 Efficient offloading to GPU et al

 Parallelise evaluator using ParaPhrase tools

 Release beta-version (target Feb 2014)

Thursday, 5 December 2013 W

