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Paying for Lunch

 Unavoidable, but the price varies
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After Lunch

 Sometimes you have to 
pay an extra price
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Software Lunch

 Silver bullet (n)

 1. software slang for free lunch

 2. used to kill vampires

 Drives the creation of new languages
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Context

Software

Legacy

Hardware

Requirements

Competition

Context changes all the time 

Software has to follow suit

Each context is a market segment to conquer
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Erlang’s domain

 Concurrency

 Low latency

 Resilience

 But not perfect for everything :-(

When it fits:
High productivity
Short time-to-market
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 Declarative programs with latent parallelism

Based on TransLucid

 Tweak data structures to get scalable 
performance
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Imperative Declarative

Sequential

Implicit
parallelism

Explicit
parallelism
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 EU funded FP7 project

 Parallelism on heterogeneous platforms

 Pattern based approach

 Refactor the parallel patterns in 
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f(g(X))

skel:run(
  [{farm, [{seq, fun ?MODULE:g/1}], 24},
   {farm, [{seq, fun ?MODULE:f/1}], 24}],
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ParaPhrase Example

 Productivity: hours instead of days

f(g(X))
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I want more.

I know about wanting more. 
I invented the concept.

The question is how much more.
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Intensionality

 Extreme version of declarative programming

 Higher-level than functional programming

 Focus on composition in a math like way

 Extensional data needed to give the 
intensional program something concrete to 
work on
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Glue

Intensional

Extensional

Erlang

C/asm

var C = A + B

{A, float, 512, 64}
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Variables in ICE
var A = 42 + 2*#.x + #.y
Specifies this 2d thingy

space, then these subexpressions give:

‘42’
42

‘ + ’
+

‘2’
2

‘ ⇤ ’
⇥

‘#.x’ 0 1 2 3
#.x
!

0 1 2 3 · · ·

‘#.y’
0 0
1 1
2 2
3 3

#.y
#

...

Subexpressions ‘42’, ‘2’, ‘ + ’ and ‘ ⇤ ’ all define zero-dimensional entities; we say that the rank
of each is ; (the empty set). It is important to remember that each expression defines a whole
array, all at once. So the expression ‘42’ defines an array whose only entry is the value 42. One
should not think of this as a two-dimensional one-by-one array, or even a one-dimensional array
with one entry, because that is not what is going on here. The array truly is zero-dimensional,
and holds one value, it does not have a number of cells holding di↵erent values, or even a number
of cells all holding 42. Hence, the only value that can be retrieved from the array is the one value
that defines it. We cannot emphasize this point enough, because it is critical to understanding the
remainder of the text. Without understanding that every expression defines an array, any further
attempt at understanding will be fraught with di�culty.

Subexpressions ‘#.x’ and ‘#.y’ are 1-dimensional arrays: ‘#.x’ has rank {x}, which means that
it is an array that has entries in the x direction. In fact, it is an array whose entries are simply
the index of the entry, in the x direction. Again, this point is key to understanding TL: when
specifying a cell in an intension, one must give, for each dimension in the rank of the intension,
both the relevant dimension (the direction) and its ordinate. Similarly, ‘#.y’ has rank {y} and is
an array whose entries are the index of the entry in the y direction.

For subexpression ‘2 ⇤#.x’, since subexpressions ‘2’ and ‘ ⇤ ’ are of rank ;, they are naturally
extended to rank {x}, and the resulting array is the multiplication of each pair of corresponding
entries from the arrays ‘2’ and ‘#.x’.

‘2’ 0 1 2
#.x
!

2 2 2 · · ·

‘ ⇤ ’ 0 1 2
#.x
!

⇥ ⇥ ⇥ · · ·

‘2 ⇤#.x’ 0 1 2
#.x
!

0 2 4 · · ·

For expression ‘42 + (2 ⇤#.x) +#.y’, the subexpressions ‘42’ and ‘ + ’ (both rank ;), ‘2 ⇤#.x’
(rank {x}), and ‘#.y’ (rank {y}) are all extended to rank {x, y}, and so the value of ‘A’ is:

‘A’ 0 1 2 3
#.x
!

0 42 44 46 48 · · ·

1 43 45 47 49 · · ·

2 44 46 48 50 · · ·

3 45 47 49 51 · · ·

#.y
#

...
...

...
...

. . .

Looking at example ‘A’, one could easily get the impression that ordinates must always be
natural numbers. This is not the case. Here we show an intension ‘L’, without showing how it
might be defined, giving the textual representation of the integers in several languages, varying in
dimensions x and lang:

‘L’
#.x
 �2 �1 0 1 2

#.x
!

EN · · · minus two minus two zero one two · · ·

ES · · · menos dos menos uno cero uno dos · · ·

FR · · · moins deux moins un zéro un deux · · ·

#.lang
#

...
...

...
...

...
...

. . .

3
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Infinite table = extensional view of our intension
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Demands and Context
A @ [ x <- 3, y <- 5]

“demand for the value of A 
at the context x=3 and y=5”
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Fibonacci

var Fib = if #.n <= 1 then
#.n

else
Fib @ [n<- #.n-1] +
Fib @ [n<- #.n-2]

fi

Equation:
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Fibonacci
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Fibonacci
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fib @ [n <- 5]

fib @ [n <- 4] fib @ [n <- 3]

fib @ [n <- 2] fib @ [n <- 1]
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Fibonacci
Demand:

fib @ [n <- 5]

fib @ [n <- 4] fib @ [n <- 3]

fib @ [n <- 2] fib @ [n <- 1]

fib @ [n <- 0]

0

1
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LaPlacian Relaxation

electrode
electrode

What is the field strength here?
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LaPlacian Relaxation

S where

var S = if ELECTRODE then POTENTIAL

      else fby.t 0 (avg S)

      fi

fun avg A = (prev.x A + next.x A +

           prev.y A + next.y A) / 4

Equation:
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LaPlacian Relaxation
Electrode at (3,4) 
with potential 5
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LaPlacian Relaxation
Electrode at (3,4) 
with potential 5

S@[x<-4, y<-4, t<-2]

(avg S)@[x<-4, y<-4, t<-1]
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LaPlacian Relaxation
Electrode at (3,4) 
with potential 5

S@[x<-4, y<-4, t<-2]

(avg S)@[x<-4, y<-4, t<-1]

(S@[x<-3, y<-4, t<-1]+ S@[x<-5, y<-4, t<-1]+ 
S@[x<-4, y<-3, t<-1]+ S@[x<-4, y<-5, t<-1])/4
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LaPlacian Relaxation
Electrode at (3,4) 
with potential 5

S@[x<-4, y<-4, t<-2]

(avg S)@[x<-4, y<-4, t<-1]

(S@[x<-3, y<-4, t<-1]+ S@[x<-5, y<-4, t<-1]+ 
S@[x<-4, y<-3, t<-1]+ S@[x<-4, y<-5, t<-1])/4

(5 + (avg S)@[x<-5, y<-4, t<-0]+ 
(avg S)@[x<-4, y<-3, t<-0]+(avg S)@[x<-4, y<-5, t<-0])/4
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LaPlacian Relaxation
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LaPlacian Relaxation

2
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LaPlacian Relaxation
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Matrix multiplication

Source:  rosalind.info
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Matrix mult in ICE
fun multiply.d_r.d_c.k X Y = W
      where
        dim d <- 0
        var Xd = rotate.d_c.d X
        var Yd = rotate.d_r.d Y
        var Z = Xd * Yd
        var W = sum.d.k Z
      end

Thursday, 5 December 2013 W



Matrix mult in ICE
fun multiply.d_r.d_c.k X Y = W
      where
        dim d <- 0
        var Xd = rotate.d_c.d X
        var Yd = rotate.d_r.d Y
        var Z = Xd * Yd
        var W = sum.d.k Z
      end
fun sum.d_x.n X = Y @ [d_x <- n]
  where
    var Y = fby.d_x 0 (X + Y)
  end
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Status

 Scanner and parser works
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Status

 Scanner and parser works

 Evaluator near alpha level
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Status

 Scanner and parser works

 Evaluator near alpha level
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Next Steps

 Add I/O to ease big examples

 Increase usability through use cases

 Options pricer and your cool case!

 Efficient offloading to GPU et al

 Parallelise evaluator using ParaPhrase tools

 Release beta-version (target Feb 2014)
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