
Fault tolerance 101
Joe Armstrong

Wednesday, December 18, 2013

Fault
• “behaves as per specification”

• “does not crash”

Wednesday, December 18, 2013

Many systems have no
specification

Wednesday, December 18, 2013

Programming is the act of
turning an inexact

description of something
(the specification) into an

exact description of the thing
(the program)

Wednesday, December 18, 2013

A program is the most precise
description of the problem

that we have

Wednesday, December 18, 2013

• The ability to behave in a sensible manner in
the presence of failure. Consumer so$ware,
websites, ...

• The ability to behave exactly as specified
despite failures. Air traffic control, nuclear power
station control.

What is fault tolerance?

Exact specification is
extremely difficult

“In a sensible manner” is
rather wooly

When there is no spec -
“in a sensible manner”
means - does not crash

Wednesday, December 18, 2013

• History

• Hardware Fault Tolerance

• Software Fault Tolerance

• Specifications and code

• Erlang FT

• Demo

Wednesday, December 18, 2013

We cannot prevent failures

Wednesday, December 18, 2013

Automata Studies
ed. C. Shannon
Princ. Univ. Press 1956

Wednesday, December 18, 2013

Q: Can we make reliable systems
that behave reasonably from
unreliable components?

A: Yes

Wednesday, December 18, 2013

The Cornerstones of FT

• Detect Errors

• Correct Errors

• Stop Errors from Propagating

Wednesday, December 18, 2013

Needs > 1 computer

Computer 1
does the job

Computer 2
watches computer 1

Computer 3
watches computer 1

Computer 3
watches computer 1

Computer ...
watches computer 1

Error detection must work across
machine boundaries

Must write distributed programs

Programs run in para&el Decoupling and separation helps
stop errors 'om propagating

Wednesday, December 18, 2013

Things to ponder
• Hardware can fail

• Software either complies with
a spec = works or does not do
what the spec says = fails

• What should the software do
when the system behaves in a
way that is not described in
the spec?

• What do we do when we don’t
have a spec?

• Can we make reliable systems
that behave reasonably from
unreliable components?

• Detecting or masking errors?

• Correcting errors

• Propagation of errors

• Error firewalls

• Self-repairing zones

• Static/Dynamic error
detection

Wednesday, December 18, 2013

Hardware fault tolerance

• System that mask (hide) errors and use
redundancy to mask errors.

Examples: RAID disks, error correcting bits
in memory hardware etc.

Wednesday, December 18, 2013

Tandem nonstop II (1981)

Wednesday, December 18, 2013

Tandem ...
Tandem Computers, Inc. was the
dominant manufacturer of fault-
tolerant computer systems for ATM
networks,banks, stock exchanges,
telephone switching centers, and
other similar commercial transaction
processing applications requiring
maximum uptime and zero data loss.

To contain the scope of failures and of corrupted
data, these multi-computer systems have no
shared central components, not even main
memory. Conventional multi-computer systems all
use shared memories and work directly on shared
data objects. Instead, NonStop processors
cooperate by exchanging messages across a
reliable fabric, and software takes periodic
snapshots for possible rollback of program
memory state.

Besides handling failures well, this "shared-nothing"
messaging system design also scales extremely well
to the largest commercial workloads. Each doubling of
the total number of processors would double system
throughput, up to the maximum configuration of 4000
processors. In contrast, the performance of
conventional multiprocessor systems is limited by the
speed of some shared memory, bus, or switch. Adding
more than 4–8 processors that way gives no further
system speedup. NonStop systems have more often
been bought to meet scaling requirements than for
extreme fault tolerance. They compete well against
IBM's largest mainframes, despite being built from
simpler minicomputer technology.

A& quotes 'om Wikipedia

Wednesday, December 18, 2013

https://en.wikipedia.org/wiki/Fault-tolerant_computer_systems
https://en.wikipedia.org/wiki/Fault-tolerant_computer_systems
https://en.wikipedia.org/wiki/Fault-tolerant_computer_systems
https://en.wikipedia.org/wiki/Fault-tolerant_computer_systems
https://en.wikipedia.org/wiki/Automatic_teller_machine
https://en.wikipedia.org/wiki/Automatic_teller_machine
https://en.wikipedia.org/wiki/Bank
https://en.wikipedia.org/wiki/Bank
https://en.wikipedia.org/wiki/Stock_exchange
https://en.wikipedia.org/wiki/Stock_exchange
https://en.wikipedia.org/wiki/Transaction_processing
https://en.wikipedia.org/wiki/Transaction_processing
https://en.wikipedia.org/wiki/Transaction_processing
https://en.wikipedia.org/wiki/Transaction_processing

 1.10 on tuesday dec 10

Wednesday, December 18, 2013

Wednesday, December 18, 2013

Wednesday, December 18, 2013

What do we do when we
detect an error?

• Mask it (try again)

• Do nothing (crash later - not a tota&y bri&iant
idea)

• Or ...

Wednesday, December 18, 2013

LET
IT

CRASH
Wednesday, December 18, 2013

Programming the Ericsson
Diavox (1976)

If you’re in a three-
way call at any time
you can press the #
key then press 1 to
talk to party 1
2 to talk to party 2
or * to enter a
conference call

Wednesday, December 18, 2013

if(state == 3waycall && key == “#”){
 key = get_next_key();
 if(key==”1”){
 park(2);
 connect([self,1]);
 } elseif(key==”2”){
 park(1);
 connect([self,2]);
 } elseif (key==”*”){
 connect([self,1,2]);

 } elseif(key=”onhook”){
 /* Uuugh what do I do here */
}

Defensive
programming

Wednesday, December 18, 2013

• The Spec tells what to do when things happen

• The Spec does not say what to do when the
behavior goes “off-spec”

• The number of ways we can go “off spec” is
huge

• Most specifications do not include failure
analysis, and do not say what to do when you
are “off spec”

Oh Dear

Wednesday, December 18, 2013

Joe: “So what happens if we’re in a 3-way conference,
and the guy processes hash and then puts the hook
down, and doesn’t press 1 2 or star?”

Bernt: “So what you do is stop the conference, send the
phone a ring tone and when they answer go back to the
point where you were expecting them to enter 1 2 or
star.”

Joe: “But that’s not in the spec.”

Bernt: “But everybody knows.”

Joe: “I didn’t know.”

Wednesday, December 18, 2013

Calls are “files”

• If a process crashes the OS closes all files
opened by the process

• If a call crashes the OS closes all calls opened
by the process

• The OS’s job is to “keep files safe” (ie it
maintains invariants)

Wednesday, December 18, 2013

Let it crash philosophy

• If a processes crashes the OS detects this

• The OS protects the resources being used by
the process

• Programs should crash when going off spec

Wednesday, December 18, 2013

if(state == 3waycall && key == “#”){
 key = get_next_key();
 if(key==”1”){
 park(2);
 connect([self,1]);
 } elseif(key==”2”){
 park(1);
 connect([self,2]);
 } elseif (key==”*”){
 connect([self,1,2]);

 } else{
 exit(out_of_spec1);
 }
}

Defensive
programming

Wednesday, December 18, 2013

confcall(“#”) ->
 case get_next_key() of
 ”1” ->
 park(2);
 connect([self,1]);
 ”2” ->
 park(1);
 connect([self,2]);
 ”*” ->
 connect([self,1,2])
 end.

Failed Patten
matching provides
the exit

Non defensive
programming -
there is no error
detection or
correction code

Wednesday, December 18, 2013

Are hardware
and software
faults are
fundamentally
different?

Wednesday, December 18, 2013

Are there any pure functions?

Wednesday, December 18, 2013

Class (a) functions: If computing f(X)
fails and f is a pure function computing
f(X) will always fail.

Class (b) functions: If computing f(X)
fails and f is a non-pure function it
might succeed if we call f(X) again.

Wednesday, December 18, 2013

Is this a pure function?

function f(){
 int a = 10,
 int b = 2,
 return a/b
}

Wednesday, December 18, 2013

function f(){
 int a = 10,
 int b = 2,
 return a/b
}

Cosmic ray hits the memory
ce% where b is stored and

changes the 2 into zero

A heisenbug

Wednesday, December 18, 2013

Wednesday, December 18, 2013

• Heisenbug - Bug that that seems to disappear or alter its
behavior when one attempts to study it

• Bohrbug - A "good, solid bug". Like the deterministic Bohr
atom model, they do not change their behavior and are
relatively easily detected.

• Mandelbug - (named after Benoît Mandelbrot's fractal) is a
bug whose causes are so complex it defies repair, or makes its
behavior appear chaotic or even non-deterministic.

• Schrödinbug (named after Erwin Schrödinger and his
thought experiment) is a bug that manifests itself in running
software after a programmer notices that the code should
never have worked in the first place.

• Hindenbug (named after Hindenburg disaster) is a bug with
catastrophic behavior.

Source: wikipedia
Wednesday, December 18, 2013

• If a process fails restart it (fixes many heisenbugs,
especia&y those due to subtle timing errors)

• If you have tried restarting a process more than
N times in K seconds, then give up. Try and do
something simpler instead.

• Build trees of processes, if low-level nodes fail
and cannot be restarted fail higher up the tree

Wednesday, December 18, 2013

Supervision trees

workers

supervisors

Don’t forget the manual
backup :-)

Wednesday, December 18, 2013

The failure model
is part of the specification
(especially for air-traffic
control software etc.)

The customer should
understand the failure model

Wednesday, December 18, 2013

I want fault tolerant storage

That’s impossible

We’ll make three copies of your data,
on three different machines. We’ll
guarantee that if one machine crashes
you’ll never lose any data

what happens if 2 machines crash
at the same time

You can still save data on the third
machine, but it will be unsafe. Our
guarantee will not apply.

But I want more safety

Wednesday, December 18, 2013

We’ll make five copies of your data, on
five different machines. We’ll
guarantee that if two machines crashes
you’ll never lose any data

what happens if 3 machines crash
at the same time

You can still save data on machine 4
and 5, but it will be unsafe. Our
guarantee will not apply.

Why is it unsafe? - it’s stored on two machines

Because when machines 1,2,3 come
back to life they might outvote the
changes on machines 4 and 5

Wednesday, December 18, 2013

You have to explain in the
contract the failure

assumptions and what will
happen if these failures occur.
If a failure occurs that is not
planned it is not covered by

the contract.
“act of God”

Wednesday, December 18, 2013

Detecting
Errors

Wednesday, December 18, 2013

Sequential Languages

function c(){
 ...
 if(...){
 throw ...
 }
}

function a(){
 try {
 b();
 } catch (...) {
 ...
 throw ...
 }
}

function b(){
 x();
 c();
 y();
}

• Function calls put call frames
on the stack

• Try instruction put
catchpoints on the stack

• Exceptions unwind the stack
to the last catchpoint

Wednesday, December 18, 2013

Uncaught Exceptions

• What happens if the exception gets to the top of
the stack and no catchpoint handlers is found?

Java: print a stack trace and exit
C: core dumped

Erlang: Process dies some other process on the same or
some other machine possibly catches the error

Wednesday, December 18, 2013

Sequential Languages

C
program

File 1 File 2

Operating System

Crash

close close

When a process crashes the
OS notices this and closes any
resources owned by the
process

Wednesday, December 18, 2013

Erlang

Operating System

When an Erlang process crashes the
Erlang VM notices this and sends
messages to any linked processes

Process45

Crash

Process23

process 45 crashed

Process92

process 45 crashed

Erlang VM

Wednesday, December 18, 2013

Erlang

process 45 crashed

Unix OS

Erlang VM

P10

Windows

Erlang VM

P245

Crash process 10 crashed

Wednesday, December 18, 2013

Demo

1. Start a process on one machine. Send it a
message so it crashes.

2. Start a process on one machine. Send it a
message so it crashes. Detect the crash

3. Start a process on a remote machine. Send it a
message so it crashes. Detect the error on a
remote machine.

Wednesday, December 18, 2013

prog1.erl

-module(prog1).
-export([loop/0]).

loop() ->
 receive
! N ->
! io:format("node=~p 1/~p = ~p~n",
 [node(), N, 1/N]),
! loop()
 end.

Wednesday, December 18, 2013

One machine
$ erl
Eshell V5.10.1 (abort with ^G)
1> P = spawn(prog1, loop, []).
<0.34.0>
2> P ! 12.
node=nonode@nohost 1/12 = 0.08333333333333333
12
3> P ! 0.
0
4>
=ERROR REPORT==== 29-Nov-2013::13:07:26 ===
Error in process <0.34.0> with exit value:
 {badarith,[{prog1,loop,0,[{file,"prog1.erl"},{line,7}]}]}
4> P ! 12.
12

Wednesday, December 18, 2013

monitor.erl

-module(monitor).
-export([process/1]).

process(Pid) ->
 spawn(fun() ->
! ! process_flag(trap_exit, true),
! ! link(Pid),
! ! monitor(Pid)
! end).

monitor(Pid) ->
 receive
! Any ->
! io:format("Monitor ~p received ~p~n",[Pid,Any]),
! monitor(Pid)
 end.

Wednesday, December 18, 2013

One machine + Monitor
Eshell V5.10.1 (abort with ^G)
1> P = spawn(prog1, loop, []).
<0.34.0>
2> monitor:process(P).
<0.36.0>
3> P ! 12.
node=nonode@nohost 1/12 = 0.08333333333333333
12
4> P ! 0.
Monitor <0.34.0> received
 {'EXIT',<0.34.0>,
 {badarith,
 [{prog1,loop,0,
 [{file,"prog1.erl"},{line,7}]}]}}

The process dies and a
message is sent to the
monitor process

Wednesday, December 18, 2013

Two machines and a monitor

$ erl -sname one
(one@joe)1> P = spawn('two@joe', prog1, loop, []).
<6803.43.0>
(one@joe)2> monitor:process(P).
<0.47.0>
(one@joe)4> P ! 10.
10
node=two@joe 1/10 = 0.1
(one@joe)5> P ! 0.
0
Monitor <6803.43.0> received
 {'EXIT',<6803.43.0>,
 {badarith,
 [{prog1,loop,0,
 [{file,"prog1.erl"},{line,7}]}]}}

$ erl -sname two
(two@joe)1>

Or we could ki%
the machine?

Wednesday, December 18, 2013

Reminder

Operating System

When an Erlang process
crashes the Erlang notices
this and te%s and linked
processes

Process 200

Crash

Process300

process 200 crashed

Erlang VM

Wednesday, December 18, 2013

Wednesday, December 18, 2013

Defensive
programming

is a consequence of a
bad concurrency

model
Wednesday, December 18, 2013

We’ve detected an error
what do we do next?

Wednesday, December 18, 2013

I’ve detected an error, what should I do?

Try again - it might be a heisenbug

Ok - give up, and tell you’re boss you
gave up. You did your best, nobody will
blame you.

I tried again ten time but it didn’t
help

.... *@!%$!!**&%%%!!!%$#@*** #$@

We have a problem Huston

Wednesday, December 18, 2013

Do not fail silently
if you cannot do exactly what
you are supposed to do crash.

Somebody else will fix the
problem

Wednesday, December 18, 2013

Summary
• No shared memory

• Pure message passing

• Remote Error Detection

• Replicated hardware and software on separated machines

• Crash when you get an error

• Do not fail silently

• Some other process fixes the error

Wednesday, December 18, 2013

Does this
strategy work?

Wednesday, December 18, 2013

