a systems language
pursuing the trifecta
safe, concurrent, fast -lkuper

mozilla

“rust is like c++ grew up and went to grad school,

shares an office with erlang, and is dating sml”
-rpearl, #rust

stack allocation; memory layout;
monomorphisation of generics

safe task-based concurrency, failure

type safety; destructuring bind; type classes

2-

3

Motivation

- Why invest in a new programming language
- Web browsers are complex programs

- Expensive to innovate and compete while

implementing atop standard systems
languages

- So to implement next-gen browser, Servo ...
> http://github.com/mozilla/servo

- ... Mozilla is using (& implementing) Rust

> http://rust-lang.orqg

» Part I: Motivation
Why Mozilla is investing in Rust
Part Il: Rust syntax and semantics
Part lll: Ownership and borrowing

Part IV: Concurrency model

Language Design

 Goal: bridge performance gap between safe
and unsafe languages

- Design choices largely fell out of that
requirement

+ Rust compiler, stdlib, and tools are all
MIT/Apache dual license.

Systems Programming

« Resource-constrained enviroments, direct
control over hardware

« C and C++ dominate this space

- Systems programmers care about the last
10-15% of potential performance

10

Unsafe aspects of C

- Dangling pointers

 Null pointer dereferences

- Buffer overflows, array bounds errors
- Format string and argument mismatch

« Double frees

11

Tool: Sound Type Checking

Milner, 1978

. "Well-typed programs can't go wrong."

- More generally: identify classes of errors ...
o ... then use type system to remove them
o (or at least isolate them)
- Eases reasoning; adds confidence Tobin-Hochstadt 2006,

Wadler 2009

. Well-typed programs help assign blame.

o (unsafe code remains as way to “go wrong")

© and even safe code can fail (but only in
controlled fashion)

12-14

Simple source < compiled code relationship

 This is a reason C persists to this day

« Programmer can build mental model of
machine state

* Programmer can also control low-level details
(e.g. memory layout)

 Goal: Rust should preserve this relationship ...
° ... while retaining memory safety ...

o ... without runtime cost.

15-17

Zero-cost abstractions

- Goal: do not pay at runtime for a feature
unused by program

- There is still a non-zero cognitive cost

o Often must think more about data
representation

© Make choices about memory allocation

- But in safe blocks of code, compiler checks our
assumptions

18

Part I: Motivation
» Part Il: Rust syntax and semantics

Systems programming under the
influence of FP

Part lll: Ownership and borrowing

Part IV: Concurrency model

19

Expression-oriented

* not statement-oriented (unless you want to be)

- An expression:2 + 3 > 5
- An expression: { let x = 2 + 3; x > 5 }
- A binding of y followed by an expression:
let y={1let x =2 + 3;, x >5 };
ify {x+ 6 } else { x + 7 }
 Function definition and invocation

fn add3(x:int) -> int { x + 3 }
let yv = foo(2) > 5;

20-22

Expression-oriented

* not statement-oriented (unless you want to be)

let y={ let x =2+ 3; x >5 1};
ify {x+ 6 } else { x + 7 }

fn add3(x:int) -> int { x + 3 }

23

Expression-oriented

- not statement-oriented (unless you want to be)

clet y={ let x =2+ 3; x > 5 };
ify {x+ 6} else { x + 7 }

« fn add3(x:int) -> int { x + 3 }

- But return statement is available if you prefer that style

fn add3(x:int) -> int { return x + 3; }

let y={ let x =2+ 3;, x > 5 };
if y {

return x + 6;
} else {

return x + 7;

}

24-25

Syntax extensions

 C has a preprocessor
- Likewise, Rust has syntax extensions

« Macro-invocations in Rust look like
macroname! (...)

© Eases lexical analysis (for simple-minded ...)

println! ("Hello World {:d}", some int);
assert! (some int == 17);
fail! ("Unexpected: {:?}", structure);

* (User-defined macros are out of scope of talk)

26-28

Mutability

- Local state is immutable by default

let x = 5;
let mut y = 6;
Yy = X; // fine

x =x+1; // static error!

29

Enumerated variants |

enum Color typedef enum

{ {
Red, Red,
Green, Green,
Blue Blue

} } color t;

Rust enum C enum

fn f£(c: Color) {
match c {
Red => /*
Green => /*
Blue => /*

Rust match

Matching enums

*/
*/,
*/

void f(color t c) {
switch (c) {

case Red: [* ... */
break;

case Green: /* ... */
break;

case Blue: /* ... */
break;

C switch

31

Matching nonsense

fn £(c: Color) { void f(color t c) {
match c { switch (c) {
Red => [/* ... */, case Red: /* ... */
Green => /* ... */, break;
17 => /* ... */ case Green: /* ... */
} break;
} case 17: /* ... */
break;
}

Rust type error

C switch

« Rust also checks that cases are exhaustive.

32-33

Enumerated variants Il: Algebraic Data

enum Spot ({
One (int)
Two (int, int)

34

Destructuring match

fn magnitude (x:
match x {
One (n)
Two(x, y)
}

Spot) -> int {

=> n,
=> (x*x + y*y).sqrt()

35

Structured data

« Similarto structinC

© lay out fields in memory in order of
declaration

- Liveness analysis ensures initialization
struct Pair { x: int, y: int }
let p34 = Pair{ x: 3, y: 4 };

fn zero x(p: Pair) -> Pair ({
return Pair{ x: 0, ..p };

}

36-37

Closures

* Rust offers C-style function-pointers that carry
no environment

- Also offers closures, for environment capture

- Syntax is inspired by Ruby blocks

let p34 = Pair{ x: 3, y: 4 };
let x adjuster =
|lnew x| { Pair{ x: new x, ..p34 } };
let pl4d = x adjuster(l);
let p24 = x adjuster(2);
println! ("p34: {:?} pl4d: {:?}", p34, pld);

> p34: Pair{x: 3, y: 4} pld: Pair{x: 1, y: 4}

38-40

What about OOP?

« Rust has methods too, and interfaces

- They require we first explore Rust's notion of a
“pointer”

41

Pointers

let x: int = 3;
let y: &int = &x;
assert! (*y == 3);

// assert!(y == 3); /* Does not type-check */

42

Pointers and Mutability

let mut x: int = 5;
increment (&mut x) ;
assert! (x == 6);

fn increment(r: &mut int) {
*r = *r + 1;

}

43

Ownership and Borrowing

- Memory allocated by safe Rust code, 3 cases
o stack-allocated local memory
© owned memory: “exchange heap”
° intra-task shared memory: managed heap

- code can “borrow” references to/into owned
memory; static analysis for safety (no aliasing)

o Can also borrow references into "GC" heap

© in that case sometimes resort to dynamic
enforcement of the borrowing rules

44-45

Methods

struct Pair { x: int, y: int }

impl Pair {
fn zeroed x copy(self) -> Pair {
return Pair { x: 0, ..self }

}

fn replace x(&mut self) { self.x = 0; }
}

let mut p tmp = Pair{ x: 5, y: 6 };

let p06 = p tmp.zeroed x copy():;

p_tmp.replace x(17);

println! ("p _tmp: {:?} pO6: {:?}", p tmp, p06);

Prints
p tmp: Pair{x: 17, y: 6} p06: Pair{x: 0, y: 6}

46-48

Generics

- aka Type-Parametericity

- Functions and data types can be abstracted
over types, not just values

enum Option<T> ({
Some (T) ,
None

}

fn safe get<T>(opt: Option<T>, dflt: T) -> T {
match opt {
Some (contents) => contents,
None => dflt

49-51

Bounded Polymorphism

struct Dollars { amt: int }
struct Euros { amt: int }
trait Currency ({

fn render (&self) -> ~str;

fn to euros(&self) -> Euros;

}

fn add as euros<C:Currency>(a: &C, b: &C) -> Euros {
let sum = a.to _euros().amt + b.to euros() .amt;
Euros{ amt: sum }

52

Trait Impls

impl Currency for Dollars ({
fn render (&self) -> ~str {
format! ("${}", self.amt)
}
fn to euros(&self) -> Euros ({
let a = ((self.amt as £64) * 0.73);
Euros { amt: a as int }

}
}

impl Currency for Euros ({
fn render (&self) -> ~str {
format! ("€{}", self.amt)
}

fn to euros(&self) -> Euros { *self }

53

Static Resolution

fn add as euros<C:Currency>(a: &C, b: &C) -> Euros {
let sum = a.to euros() .amt + b.to euros() .amt;
Euros{ amt: sum }

let eul00 = Euros { amt: 100 };
let eu200 = Euros { amt: 200 };
println! ("{:?}", add as euros(&eul00, &eu200));

= Euros{amt: 300}

54-56

Static Resolution

fn add as euros<C:Currency>(a: &C, b: &C) -> Euros {
let sum = a.to euros() .amt + b.to euros() .amt;
Euros{ amt: sum }

let usl00 = Dollars { amt: 100 };
let us200 = Dollars { amt: 200 };
println! ("{:?}", add as euros(&usl00, &us200));

= Euros{amt: 219}

57-58

Static Resolution (!)

fn add as euros<C:Currency>(a: &C, b: &C) -> Euros {
let sum = a.to euros() .amt + b.to euros() .amt;
Euros{ amt: sum }

let usl00 = Dollars { amt: 100 };
let eu200 = Euros { amt: 200 };
println! ("{:?}", add as euros(&usl00, &eu200));

—

59-61

Static Resolution (!)

fn add as euros<C:Currency>(a: &C, b: &C) -> Euros {
let sum = a.to euros() .amt + b.to euros() .amt;
Euros{ amt: sum }

let usl00 = Dollars { amt: 100 };
let eu200 = Euros { amt: 200 };
println! ("{:?}", add as euros(&usl00, &eu200));

error: mismatched types: expected &Dollars
but found &Euros (expected struct Dollars
but found struct Euros)
println! ("{:?}", add as euros(&usl00, &eu200))

A

RO RN AN N N

62

Dynamic Dispatch

fn add as euros<C:Currency>(a: &C, b: &C) -> Euros {
let sum = a.to euros() .amt + b.to euros() .amt;
Euros{ amt: sum }

}

fn accumeuros(a: &Currency, b: &Currency) -> Euros {
let sum = a.to euros() .amt + b.to euros() .amt;
Euros{ amt: sum }

}

let usl00 = Dollars { amt: 100 };

let eu200 = Euros { amt: 200 };

println! ("{:?}", accumeuros (&usl00 as &Currency,
&eu200 as &Currency)) ;

= Euros{amt: 273}

63-64

An example from C/C++

A (contrived, strawman) example from C/C++

enum Flavor { chocolate, wvanilla };
struct Cake {
Flavor flavor; int num slices;
void eat slice();

};

67

enum Flavor { chocolate, wvanilla };
struct Cake {
Flavor flavor; int num slices;
void eat slice();

};

Cake birthday cake(Flavor £, int num slices);
void print status(Cake const &cake, std::string);
void eat entire (Cake é&cake);

// On return, ate >= “count (or cake is gone).
void eat at least(Cake &cake, int const &count);

68

Cake birthday cake(Flavor £, int num slices);
void print status(Cake const &cake, std::string);
void eat entire (Cake é&cake);

// On return, ate >= “count (or cake is gone).
void eat at least(Cake &cake, int const &count);

69

Cake birthday cake(Flavor f, int num slices);
void print status(Cake const &cake, std::string);
void eat entire (Cake é&cake);

// On return, ate >= “count (or cake is gone).
void eat at least(Cake &cake, int const &count);

70

Cake birthday cake(Flavor f, int num slices);
void print status(Cake const &cake, std::string);
void eat entire (Cake é&cake);

// On return, ate >= “count (or cake is gone).
void eat at least(Cake &cake, int const &count);

void Cake::eat slice() { this->num slices -= 1; }

71

Cake birthday cake(Flavor f, int num slices);
void print status(Cake const &cake, std::string);
void eat entire (Cake é&cake);

// On return, ate >= “count (or cake is gone).
void eat at least(Cake &cake, int const &count);

void Cake::eat slice() { this->num slices -= 1; }

void eat at least(Cake &cake, int const &threshold)
{
int eaten so far = 0;
while (cake.num slices > 0
&& eaten so far < threshold) {
cake.eat slice();
eaten so far += 1;

72

Cake birthday cake(Flavor f, int num slices);
void print status(Cake const &cake, std::string);
void eat entire (Cake é&cake);

// On return, ate >= “count (or cake is gone).
void eat at least(Cake &cake, int const &count);

73

Cake birthday cake(Flavor f, int num slices);
void print status(Cake const &cake, std::string);
void eat entire (Cake é&cake);

// On return, ate >= “count (or cake is gone).
void eat at least(Cake &cake, int const &count);

void eat entire (Cake &cake) {
eat at least(cake, cake.num slices);

}

74

Cake birthday cake(Flavor f, int num slices);

void print status(Cake const &cake, std::string);
void eat entire (Cake é&cake);

// On return, ate >= “count (or cake is gone).
void eat at least(Cake &cake, int const &count);

void eat entire (Cake &cake) {
eat at least(cake, cake.num slices);

}

int main () {
Cake cake = birthday cake(vanilla, 16);
print status(cake, "at outset");
eat at least(cake, 2);
print status(cake, "after 2");
eat entire (cake);
print status(cake, "finally");

75

int main () {
Cake cake = birthday cake(vanilla, 16);
print status(cake, "at outset");
eat at least(cake, 2);
print status(cake, "after 2");
eat entire (cake);
print status(cake, "finally");

int main () {
Cake cake = birthday cake(vanilla, 16);
print status(cake, "at outset");
eat at least(cake, 2);
print status(cake, "after 2");
eat entire (cake) ;
print status(cake, "finally");

Transcript of run:

cake at outset has 16 slices.
cake after 2 has 14 slices.
cake finally has 7 slices.

Oops.

77-79

void eat at least(Cake &cake, int const &threshold)

{
int eaten so far = 0;
while (cake.num slices > 0
&& eaten so far < threshold) {
cake.eat slice();
eaten so far += 1;

}

void eat entire (Cake &cake) ({
eat at least(cake, cake.num slices);

}

Classic aliasing bug

80-81

The previous example was contrived, but aliasing
bugs are real. Cause crashes, security holes, and
other incorrect behavior

We want Rust to make it harder to make silly mistakes.
(but not impossible)

((you need to opt in to write unsafe code))

82-85

The previous example was contrived, but aliasing
bugs are real. Cause crashes, security holes, and
other incorrect behavior

We want Rust to make it harder to make silly mistakes.
(but not impossible)

((you need to opt in to write unsafe code))

86

What does the Cake code look like in Rust?

87

enum Flavor { chocolate, wvanilla }
struct Cake { flavor: Flavor, num slices: int }

88

enum Flavor { chocolate, wvanilla }
struct Cake { flavor: Flavor, num slices: int }

fn birthday cake(f:Flavor, num slices:int) -> Cake;

fn status(cake: &Cake, when: &str);
fn eat entire(cake: &mut Cake)

// On return, ate >= “count (or cake is gone).
fn eat at least(cake: &mut Cake, count: &int)

89

fn
fn
fn

//

birthday cake(f:Flavor, num slices:int) -> Cake;
status (cake: &Cake, when: &str);
eat entire(cake: &mut Cake)

On return, ate >= "count (or cake is gone).
eat at least(cake: &mut Cake, count: &int)

90

fn
fn
fn

//
fn

birthday cake(f:Flavor, num slices:int) -> Cake;
status (cake: &Cake, when: &str);
eat entire(cake: &mut Cake)

On return, ate >= "count (or cake is gone).
eat at least(cake: &mut Cake, count: &int)

91

fn birthday cake(f:Flavor, num slices:int) -> Cake;
fn status(cake: &Cake, when: &str);
fn eat entire(cake: &mut Cake)

// On return, ate >= “count (or cake is gone).
fn eat at least(cake: &mut Cake, count: &int)

impl Cake ({
fn eat slice(&mut self) ({
self.num slices -= 1;

}

92

fn birthday cake(f:Flavor, num slices:int) -> Cake;
fn status(cake: &Cake, when: &str);
fn eat entire(cake: &mut Cake)

// On return, ate >= “count (or cake is gone).
fn eat at least(cake: &mut Cake, count: &int)

impl Cake ({
fn eat slice(&mut self) ({
self.num slices -= 1;

}
}

fn eat at least(cake: &mut Cake, threshold: &int) ({
let mut eaten so far = 0;
while (cake.num slices > 0
&& eaten so far < *threshold) ({
cake.eat slice(); eaten so far += 1;

93

fn
fn
fn

//
fn

birthday cake(f:Flavor, num slices:int) -> Cake;
status (cake: &Cake, when: &str);
eat entire(cake: &mut Cake)

On return, ate >= "count (or cake is gone).
eat at least(cake: &mut Cake, count: &int)

94

fn
fn
fn

//
fn

fn

birthday cake(f:Flavor, num slices:int) -> Cake;
status (cake: &Cake, when: &str);
eat entire(cake: &mut Cake)

On return, ate >= "count (or cake is gone).
eat at least(cake: &mut Cake, count: &int)

eat entire(cake: &mut Cake) {
eat at least(cake, &cake.num slices);

95

fn
fn
fn

//
fn

fn

fn

birthday cake(f:Flavor, num slices:int) -> Cake;
status (cake: &Cake, when: &str);
eat entire(cake: &mut Cake)

On return, ate >= "count (or cake is gone).
eat at least(cake: &mut Cake, count: &int)

eat entire(cake: &mut Cake) {
eat at least(cake, &cake.num slices);

main () {
let mut cake = birthday cake(vanilla, 16);
status (&cake, "at outset");
eat at least (&mut cake, &2);
status (&cake, "after 2");
eat entire (&mut cake);
status (&cake, "finally") ;

96

- S0, wait, was the port successful?

% rustc cake.rs

error: cannot borrow (*cake).num slices as
immutable because it is also borrowed
as mutable

eat at least(cake, &cake.num slices);

s PO

note: second borrow of (*cake).num slices’

occurs here

eat at least(cake, &cake.num slices);
A

N N N

error: aborting due to previous error

97-98

fn eat entire(cake: &mut Cake) ({
eat at least(cake, &cake.num slices);

}

The compiler is complaining about our attempt to alias here!

- This fixed version compiles fine.

fn eat entire(cake: &mut Cake) {
let n = cake.num slices;
eat at least(cake, é&n);

}

Of course, this fix is applicable to our C++ code
too. The point is that Rust enforces these stricter
rules outlawing borrows that alias (at least in safe
code).

99-102

Concurrency

103

104

105

let o = ~make t();

@ @

106

let o = ~make t();

@ @

!
—]
il

O N

107

chan.send(o); /* o is now locally invalid */

@ @

108

(telephone demo)

109

Topics not covered

- regions/lifetimes and their subtyping
relationship

 borrow-checking static analysis rules
- freezing/thawing data structures

- one-shot closures: proc

110

The Rust team: Brian Anderson, Alex Chrichton,
Felix Klock (me), Niko Matsakis, Patrick Walton

Interns/Alumni: Graydon Hoare, Michael
Bebenita, Ben Blum, Tim Chevalier, Rafael
Espindola, Roy Frostig, Marijn Haverbeke, Eric

Holk, Lindsey Kuper, Elliott Slaughter, Paul
Stansifer, Michael Sullivan

(and the many members of the larger Rust community)

http://rust-lang.org/

111

Join the Fun!

rust-lang.orqg

R

_—

mailing-list: rust-dev@mozilla.org

community chat: irc.mozilla.org :: #rust
Moziiia

112

