CONTROLLER CONTROL

DESIGNING DOMAINS FOR WEB APPLICATIONS




FORMAT

e Move non-web stuff out of web
e Umbrellas



DEFAULT PHOENIX STRUCTURE

e Most of the code in web
e Some files in lib (endoint.ex, repo.ex)
e Split into controllers, models, views and templates



tree -d -I "node_modules|_build|deps|static" .

— config

— gettext
L— repo
L— migrations

channels

)
o
o
+
-
(]
—
—
o
-
(%]

[TTTTT

channels
controllers
models
templates

F— challenge
F— game

F— layout
— page

— session
L— user

I BB E BRH

views




WHAT IS A CONTROLLER?

¢ Glue code between model and view

e Should focus on web layer

* (Generally) last part of endpoint pipeline
e Interfaces with conns

* Friends with sockets and channels



A CONTROLLER IS NOT
THE INTERFACE TO
YOUR DATABASE




STOP USING REPO IN CONTROLLER

S grep -ir "Repo" apps/oxo_web/web/

[controllers/game_controller.ex: challenge = Repo.get(Challenge, id)
[controllers/game_controller.ex: Repo.update()
[controllers/user_controller.ex: case Repo.insert(changeset) do

[controllers/challenge controller.ex: Repo.all()

[controllers/challenge controller.ex: Repo.preload( :user)

[controllers/challenge controller.ex: Repo.insert!()

/web.ex: alias Oxo.Repo



w Sean Williamson 0

@ TheGazler Your suggestion to keep Repo out
of controllers has been extraordinarily helpful! It
led to a massive improvement in my app

@ 2
<

n @SuperMNullSet



WHY IS REPO IN CONTROLLER?



www.phoenixframework.org

Once a user submits the form rendered from new.html above, the form elements and their values

will be posted as parameters to the create action. This action shares some steps with the iex

experiments that we did above.

def create(conn, %{"user" => user_params}) do
changeset = User.changeset(%User{}, user_params)

case Repo.insert(changeset) do
{:0k, _user} ->
conn
|> put_flash(:info, "User created successfully.")
|> redirect(to: user_path(conn, :index))
{:error, changeset} ->
render(conn, "new.html", changeset: changeset)
end
end

Notice that we get the user parameters by pattern matching with the "user" key in the function




.insert(changeset)
singular

humar crea

singular path{conmn,

"new.html", chan t: ct

singular




Programming,
hoenix

82.N0S J1X1]3 N0

Productive |> Reliable |> Fast

Chris McCord,
Bruce Tate,
and José Valim

edited by Jacquelyn Carter




GARY
POTTER

and the Ordex of the Phoenix

i !
)
[ ' ~
. N
a4 1 g

4

r | 40
L]
i

|

elixir § press



Simultaneous Users

2.90e+6

2.00e+6

1.50e+6

1.00e+6

500000

200 300
seconds




Should | use Ecto.Repo in Controller or Model for Elixir Phoenix?

1 Answer

You should keep your Repo calls inside your controller. If your logic is complicated then you
should consider moving the logic out into its own service module

You should treat your model functions as pure (free from side effects) so they should only act on
data. So for example you could have:

def alphabetical(query)
order_by(query, [u], u.name)}
end

But you should not have:

def alphabetical(query)
', [u], u.name)

This is because queries are purely data, the call to Repo.all has side effects (going off to the
database) so it belongs in your controller.




WHY IS REPO IN CONTROLLER?
WE SAID IT SHOULD BE
BUT...

THINGS EVOLVE



£ _q Anton Domratchev % Follow

New and improved Phoenix 1.3 directory
structure. Keep your web in your app!
#elixirconf

phoenix.new [

— config

— assets

— lib

L— my _app <—
— web «—— web N

— channels
— controllers
— templates
L— views

a e " F _'.,
Rl aldE2E




WORLD OF GRAND THEFT POKEMON GO 2.0

Playing as X You won!

X X X




# TODO: SHOW APPLICTION



HOW TO NOT REPO

e (reate functions in "context"
* Functions should do everything non-web related
e Delete Repo alias in web.ex



REGISTER USER






MOVE FROM CONTROLLER



def create(conn, params) do
{%{"email" => email, "password" => password}, player_p} =
Map.split(params, ["emaill", "password"])
case Accounts.register_player(email, password, player_p) do
{:0k, player} -> redirect(...)
{:error, changeset} -> render(...)

end

end




defmodule Oxo.Accounts do
alias Oxo.{Player, Repo, Auth}

def register_player(email, password, player_params) do

Ecto.Multi.new()

|> Ecto.Multi.run(:account, fn _ ->
Auth.register(email, password)

end)

|> Ecto.Multi.run(:player, fn %{account: account} -=
%Player{account id: account.id}
|> Player.changeset(player_params)
|> Repo.insert()

end)

|> Repo.transaction()

> handle_new_registration()

end

end




defmodule Oxo.Accounts do

alias Oxo.Mailer

defp handle_new_registration({:ok, results}) do
player = %{results.player | email: results.account.email}
Mailer.send registration_email(player)
{:0k, player}

end

defp handle_new_registration({:error, _, changeset, }) do
{:error, changeset}

end

end




REGISTER USER

e Accounts is the context

e (Contains all database logic
o Leverages the auth context
* Handles email

e Transform response



MODULE BENEFITS

e Domain logic no longer tied to controller

e We can provider other interfaces to the function
o Mix Task

o Telnet

o Email

e (an test the flow without the controller



LISTING GAME CHALLENGES

def index(conn, _params) do
current_user = conn.assigns.current_user

player = Repo.preload(current_user, :player).player

challenges =
Challenge

|> Ecto.Query.where(open: true)

|> Ecto.Query.where([c], c.player_1id != ~player.id)
|> Repo.all()
|> Repo.preload(:player)

+ challenges =
+ |> Accounts.get _player(current_user)
+ |> Game.list_open_challenges()

render(conn, "index.html", challenges: challenges)

end

e Doesn't matter where challenges are fetched from




LISTING GAME CHALLENGES

defmodule Oxo.Game do
def get_player(%Auth.Account{} = account) do
Repo.preload(account, :player).player

end

def 1list_open_challenges(%Player{} = player) do

Challenge
Ecto.Query.where(open: true)
Ecto.Query.where([c], c.player_id player.id)
Repo.all()

Repo.preload(:player)

e Game is the context

e All datahacea Inagic harvo




CREATE NEW CHALLENGE

def create(conn, _params) do

current_player = conn.assigns.current_player

challenge =

current_player

|> Ecto.build_assoc(:challenges)
|> Challenge.changeset(%{})

|> Repo.insert!()

+ challenge = Game.issue_open_challenge!(current_player)

redirect(conn, to: game_path(conn, :show, challenge))

end

———EEEENNN

e This was an easy case because we use insert!



CREATE NEW CHALLENGE

defmodule Oxo.Game do
def issue_open_challenge!(%Player{} = player) do
player
Ecto.build assoc(:challenges)
Challenge.changeset(%{})
Repo.insert!()

end

end

e Game is still the context
e Try to use descriptive verbs (issue instead of create)




CLOSE CHALLENGE

(GAMECONTROLLER.SHOW)



challenge = Repo.get(Challenge, id)
current_player_id = conn.assigns.current_player.id
case challenge do
%Challenge{player_1id: ~current_player_id} ->
player_token = Phoenix.Token.sign(...)
render(...)
%Challenge{} ->
challenge
|> Challenge.changeset(%{open: false})
|> Repo.update()
case Game.close_challenge(id, current_player) do
{:0k, challenge} ->
player token = Phoenix.Token.sign(...)
render(...)
->
conn
|> put_flash(:error, "Could not find challenge")
|> redirect(to: challenge_path(conn, :index))




CLOSING A CHALLENGE

def close_challenge(id, %Player{id: player_id} = player) do
case Repo.get(Challenge, id) do
%Challenge{player 1id: ~player_id} = challenge
{:0k, challenge}

%Challenge{} = challenge
update_challenge(challenge, %{open: false})

{:0k, challenge}

{:error, :not_found}




CONVERTING CONTROLLERS SUMMARY

 Remove Repo alias from web.ex

* Hope this causes compilation errors

* grep -ir Repo controllers/

e (Convert controller body to context module function
* Rename controllers/channels to be namespaced in
web

e Do one controller at a time

e Commit at the end!



50...MODELS



S/MODELS/SCHEMAS/G



" IPHONE 6




WHAT IS A MODEL?

e A representation of your domain (domain model)
* Nothing to do with the database tables

e (an leverage the database

e (an encapsualte many database transactions

e (an do other things too (email, etc.)



WHAT IS A SCHEMA?

e A representation of your table row

e (an reference other schemas (has_many,
belongs_to)

e (an perform data integrity validations

o (Can't be blank

o Must be unique (enforced by db index)

© Not can't create on a Tuesday



CHANGING MODELS TO SCHEMAS

e (Could just have rename "models" directory to
"schemas"
o schemas/challenge.ex, schemas/player.ex

e Or nest schemas in context instead
e game/challange.ex, accounts/player.ex
e change ModelCase to DatabaseCase



tree -d -I "node_modules|_build|deps|static" .

— config

— lib

| L— oxo

F— accounts

F— auth

L— game

channels

(a]
o
=]
+
A
o
—
—
D
A
w0n

[TTTTT

channels
controllers

templates

— challenge
F— game

— layout
— page

— session
L— user

|_
|_
— plugs
|_
|

|

|

|

|

|
L

views




MOVING WEB

git mv web/static/ assets/

git mv package.json assets/

mv node _modules/ assets/

echo "assets/node_modules" >> .gitignore

git mv web/ 1ib/oxo/web/

find lib/oxo/web/ -type f -exec sed -1 \
's/defmodule Oxo/defmodule Oxo.Web/g' {} +




tree -d -I "node_modules|_build|deps|static" .

— assets

— config

— lib

| L— oxo

F— accounts
— auth

F— game

L— web

— channels
F— controllers
— plugs
— templates
F— challenge
F— game
— layout
— page
— session

|
|
|
|
|
| L— user
L— views

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

— priv
| | gettext

|  — repo

| L— migrations
L— test

— channels
— controllers
F— models

F— oxo

— support
L— views




UMBRELLA APPLICATIONS



WHY USE AN UMBRELLA APPLICATION?

e (an run and develop each application on its own
e (an test each application on its own

* Makes contracts between applications explicit

e Releases can be built for a part of the umbrella

e Easy to extract as a dependency (e.g. hex, private
repo)



WHY NOT USE AN UMBRELLA APPLICATION?

e More complicated?

e (an bhe harder to test the entire suite

o Process name collisions

o Applications started at the wrong time

o Dependency conflicts harder to resolve (multiple
overrides)

e Developing a new feature touches multiple
applications



SHOULD YOU USE AN UMBRELLA APPLICATION?

IT DEPENDS!



THE GOOD NEWS

e You don't need to decide today!

e Moving code around in Elixir is easy

* Moving code between applications is quite easy
e Possible to convert from an umbrella to single
application




LET"S BEGIN!

mix new oxo --umbrella

e (Create a new umbrella application
e Even though we already have our application!



RENAME UMBRELLA APPLICATION

defmodule Oxo.Mixfile do
use Mix.Project
end
—

e There is already an Oxo.Mixfile in the Phoenix
application

e Rename to Oxo.Platform.Mixfile

e or something equally as generic




SET UP GIT FOR UMBRELLA

— ———

e (it is important for the next step

e Good idea to commit before making changes
e Prevent a massive initial commit



ADD EXISTING APPLICATION TO UMBRELLA

e Could just cp  the directory

o Loses git history

© No longer possible to bisect, blame, etc.
o Introduces a massive import commit

e There is a better way!



INTRODUCTING GIT SUBTREE

e |mports code into directory (unlike submodules)
e Maintains entire history
e (an subtree merge more than once



SUBTREE ADD THE APPLICATION

git remote add oxo_remote git@github.com:Gazler/oxo.git
git fetch oxo_remote
git subtree add --prefix apps/oxo_web oxo _remote/master

 Entire history is preserved! (With original SHAs)
e Some changes required since we use oxo_web
e Application could have been called "oxo " instead




UPDATE APP CONFIG

def project do

[

build path: "../../ _build",
config_path: "../../config/config.exs",
deps_path: "../../deps",

lockfile: "../../mix.lock",

]

e Share build, config and lock files
e git mv apps/oxo_web/mix.lock mix.lock




CHECK EVERYTHING 1S WORKING

* Run mix deps.get && mix test

* Hope everything works!

* Run mix phoenix.server for good measure

e Don't forget to cd "apps/oxo_web/assets && npm

install !



SPLITTING OUT OUR APPLICATION

o Web stays, everything else goes

e Remove concerns of other applications

o Using dependencies of other apps directly
(Comeonin, etc.)

o Config for other applications
 Remember to move the tests too



MAKE A NEW 0XO APPLICATION

® MmiX hew 0Xo0 --sup
e Add dependency in oxo_web
e Don't forget to add it to applications list

defp deps do
[{:0x0, in_umbrella: true},
{:phoenix, "~> 1.2.0"},
{:phoenix_pubsub, "~> 1.0.0"},

{:cowboy, "~> 1.0"}]

end




MOVE DATABASE TO CORE APPLICATION

* Move database config from config/*.exs
e Update ecto_repos in config/config.exs
e Add Ecto and other dependencies (Comeonin, etc.)

e Add repo in app supervisor



MOVE TESTS OVER

e A commit with failing tests is not a good commit
e Will need DatabaseCase

e Update elixirc_paths in mix.exs
e Update test_helper.exs



tree -d -I "node_modules|_build|deps|static" .

F— apps
F— oxo
| | config
— 1lib
| L— oxo
F— accounts

— auth

L— game

|

|

|

F— priv
|  — repo

| L— migrations
L— test

F— oxo

L— support

L— oxo_web

|
|
|
|
|
|
|
|
|
|
|
|
|
|
| — assets
|
|
|
|
|
|
|
|
|
|
|
|
|
|

— config
— lib
| L— oxo
| L— web
| — channels
| — controllers
I — plugs
| — templates
| L— views
— priv
| L— gettext
L— test
— channels

F— controllers




MIGRATING TO UMBRELLA SUMMARY

* Not too difficult to migrate to an umbrella
application

* Entire git history can be maintained

e grep -ir Repo apps/oxo_web should return no

results



GOING FORWARD

e There can be more than 2 applications

e Try to think in applications

e Split out common functions into own applications
o Authentication

o Email/Notifications

o Game logic



Gazler @TheGazler

https://github.com/Gazler/oxo



https://voicelayer.io/

