
The Road to Running
Haskell at Facebook Scale

Jon Coens
Haskell Shepherd at Facebook

Haskell is ready for industry

Journey to Protect Facebook
with Haskell

Our World

Our World

Our World

Rule
Engine

Evil?

Our World

Rule
Engine

Evil?

Our World

Rule
Engine

Evil?

We want a rule that says

• If someone is posting about Monads

• And they have more than 100 friends

• And more than half of those friends like C++

• Then block, else allow

We want a rule that says

• If someone is posting about Monads

• And they have more than 100 friends

• And more than half of those friends like C++

• Then block, else allow

Need info
about content

We want a rule that says

• If someone is posting about Monads

• And they have more than 100 friends

• And more than half of those friends like C++

• Then block, else allow

Fast

We want a rule that says

• If someone is posting about Monads

• And they have more than 100 friends

• And more than half of those friends like C++

• Then block, else allow

Fast

Need to fetch
the friend list

We want a rule that says

• If someone is posting about Monads

• And they have more than 100 friends

• And more than half of those friends like C++

• Then block, else allow

Fast

Slow

We want a rule that says

• If someone is posting about Monads

• And they have more than 100 friends

• And more than half of those friends like C++

• Then block, else allow

Fast

Slow

Need info
about each

friend

We want a rule that says

• If someone is posting about Monads

• And they have more than 100 friends

• And more than half of those friends like C++

• Then block, else allow

Fast

Slow

Very Slow

Rule Engine Language

Pure functions + Data fetching

Rule Engine Language

Pure functions + Data fetching

What did we build?

Requirements

• Latency-sensitive

• Complex expressive application logic

• Ship new code ASAP

• 100K reqs/sec

Built an Interpreter

• Latency-sensitive

• Complex expressive application logic

• Ship new code ASAP

• 100K reqs/sec

Built an Interpreter

• Latency-sensitive

• Complex expressive application logic

• Ship new code ASAP

• 100K reqs/sec

Batch data
fetches at will

Built an Interpreter

• Latency-sensitive

• Complex expressive application logic

• Ship new code ASAP

• 100K reqs/sec

Batch data
fetches at will

No concurrency
constructs

Built an Interpreter

• Latency-sensitive

• Complex expressive application logic

• Ship new code ASAP

• 100K reqs/sec

Batch data
fetches at will

No concurrency
constructs

Build dynamic
loader

Built an Interpreter

• Latency-sensitive

• Complex expressive application logic

• Ship new code ASAP

• 100K reqs/sec

Batch data
fetches at will

No concurrency
constructs

Fast enough on our
hardware

Build dynamic
loader

Scale!

???? Million reqs / sec

Scale!

• Hardware won’t catch-up

• Limited by language constructs

MapMap2(kv_grip,map) =
 Let
 kgrip(k) = kv_grip(k, MapGet(map, k))
 In
 VMap(kgrip, MapKeys(map));

MapItems(map) = MapMap2(
 \(a,b) = Pair(a,b),
 map);

We need a rewrite

If writing this from scratch today,
what would we build?

Batching Data Fetches

// find common friends
intersect(friendsOf(x), friendsOf(y))

// classic N+1 SELECTs problem
map(accountAge, friendsOf(x))

// ...and combinations of
map(accountAge, intersect(friendsOf(x), friendsOf(y))

No Concurrency Constructs

// find common friends
intersect(friendsOf(x), friendsOf(y))

// classic N+1 SELECTs problem
map(accountAge, friendsOf(x))

// ...and combinations of
map(accountAge, intersect(friendsOf(x), friendsOf(y))

Writing expressive code in your favorite language
that auto-batches I/O is almost impossible

* consider this a challenge

Write Your Own Language?

Don’t Write Your Own Language

• Implement your killer feature

• Profilers, debuggers, REPLs

• Libraries

• Maintenance forever

“Reordering execution of the
syntax tree”

Is there anything performant for
running DSLs?

What should we build?

Haskell

• Latency-sensitive

• Complex expressive application logic

• Ship new code ASAP

• > 1M reqs/sec

Batch Data Fetches

http://github.com/facebook/Haxl

Expressive I/O Batching
-- “naive” friendsOf
friendsOf :: Id -> [Id]

-- Haxl friendsOf
friendsOf :: Id -> Haxl [Id]

-- “naive” multi-fetch
map friendsOf [id1, id2, …]

-- Haxl multi-fetch
mapM friendsOf [id1, id2, …]

Haskell

• Latency-sensitive

• Complex expressive application logic

• Ship new code ASAP

• > 1M reqs/sec

Haxl

Haxl

Ship new code ASAP

• GHC runtime has a built-in linker

• Needed to implement unloading

• Run new code without restarting server

Haskell

• Latency-sensitive

• Complex expressive application logic

• Ship new code ASAP

• > 1M reqs/sec

Haxl

Haxl

GHC Linker

Haskell

• Latency-sensitive

• Complex expressive application logic

• Ship new code ASAP

• > 1M reqs/sec

Haxl

Haxl

?

GHC Linker

Foreign Function Interface

Foreign Function Interface

Server (C++)

Data Sources (C++)

Client Code (Haskell)

Haxl Framework (Haskell)

Foreign Function Interface

Server (C++)

Data Sources (C++)

Client Code (Haskell)

Haxl Framework (Haskell)
FFI

Boundary

Foreign Function Interface

Server (C++)

Data Sources (C++)

Client Code (Haskell)

Haxl Framework (Haskell) C++
Exception

Foreign Function Interface

Exception handling can be tricky

* ripe place to make Haskell better

Foreign Function Interface

foreign import ccall unsafe “countAardvarks”
 countAardvarks :: Int -> CString -> IO Int

Foreign Function Interface

foreign import ccall unsafe “goOutToLunch”
 goOutToLunch :: Int -> CString -> IO Int

Foreign Function Interface

foreign import ccall safe “goOutToLunch”
 goOutToLunch :: Int -> CString -> IO Int

Foreign Function Interface

foreign import ccall safe “countAardvarks”
 countAardvarks :: Int -> CString -> IO Int

Foreign Function Interface

For best performance, you need a
balance of safe and unsafe calls

Allocation Limits

Allocation Limits

enable heavyweight
request

fixed bug
in limit

Allocation Limits

• Triggers AsyncException in thread

• Easy in Haskell, very difficult in C++

setAllocationCounter :: Int64 -> IO ()
getAllocationCounter :: IO Int64

enableAllocationLimit :: IO ()
disableAllocationLimit :: IO ()

Allocation Limits

Limit resources per request,
not just the runtime

Semantic Differences

Semantic Differences

“Small differences in implementation
will get lost in the noise”

Semantic Differences

“Small differences in implementation
will get lost in the noise”

Semantic Differences

fxlsh> Round(0.5)
1

haxlsh> round 0.5
0

Semantic Differences

fxlsh> StrRegexReplace(“XXX”, “a*”, “b”)
“bXbXbXb”

haxlsh> substitute “XXX” “a*” “b”
“XXX”

Semantic Differences

fxlsh> Floor(inf)
-9223372036854775808

haxlsh> floor (1.0/0.0)
17976931348623159077293051907890247336179769
942306572734300811577326758055009…

Semantic Differences

One in a million happens all the time

Perf Difference

j <- parseJson “\\\\\\\\\\\\\\\\\\\\\…

http://www.serpentine.com/blog/2015/05/13/sometimes-the-old-ways-are-the-best/

Flip The Switch

Flip The Switch

switch to Haskell

* little white lie

It Works!

Spoils of Victory

GHC gave a 30% throughput increase

GC?

GC

• Fixed 1 bug that was around for years

• Never a first-order problem itself

• High GC times were allocation limit issues

• Upstreamed multiple low-hanging fruit
optimizations

Upstream

• Applicative-Do (GHC 8.0)

• Allocation limits (GHC 7.10)

• GC optimizations + bug fix

• Linker functionality

• GHCi improvements (REPL)

Developers

Developers

• Multi-day hands-on workshops

• “Therapy” Facebook group

• Rosetta stone from translator

Spoils of Victory

Dozens of Haskell developers writing
production code daily

Brave New Haskell World

Haskell is ready for industry

Haxl Devs (Past + Present)
• Simon Marlow

• Louis Brandy

• Aaron Roth

• Jon Purdy

• Bartosz Nitka

• Kubo Kovac

• Zejun Wu

• Jake Lengyel

• Katie Miller

• Noam Zilberstein

• Andrew Farmer

• Mehmet Yatbaz

Questions?

Jon Coens
Haskell Shepherd at Facebook

@JonCoens
http://github.com/facebook/Haxl

