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Haskell is ready for industry
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We want a rule that says

• If someone is posting about Monads 

• And they have more than 100 friends 

• And more than half of those friends like C++ 

• Then block, else allow

Fast

Slow

Very Slow
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Built an Interpreter

• Latency-sensitive 

• Complex expressive application logic 

• Ship new code ASAP 

• 100K reqs/sec

Batch data 
fetches at will

No concurrency 
constructs

Fast enough on our 
hardware

Build dynamic 
loader





Scale!

???? Million reqs / sec





Scale!

• Hardware won’t catch-up 

• Limited by language constructs



MapMap2(kv_grip,map) = 
  Let 
    kgrip(k) = kv_grip(k, MapGet(map, k))
  In
    VMap(kgrip, MapKeys(map));

MapItems(map) = MapMap2(
  \(a,b) = Pair(a,b), 
  map);



We need a rewrite



If writing this from scratch today, 
what would we build?



Batching Data Fetches 

// find common friends
intersect(friendsOf(x), friendsOf(y))

// classic N+1 SELECTs problem
map(accountAge, friendsOf(x))

// ...and combinations of
map(accountAge, intersect(friendsOf(x), friendsOf(y))



No Concurrency Constructs

// find common friends
intersect(friendsOf(x), friendsOf(y))

// classic N+1 SELECTs problem
map(accountAge, friendsOf(x))

// ...and combinations of
map(accountAge, intersect(friendsOf(x), friendsOf(y))



Writing expressive code in your favorite language 
that auto-batches I/O is almost impossible

* consider this a challenge



Write Your Own Language?



Don’t Write Your Own Language

• Implement your killer feature 

• Profilers, debuggers, REPLs 

• Libraries 

• Maintenance forever



“Reordering execution of the 
syntax tree”

Is there anything performant for 
running DSLs?





What should we build?



Haskell

• Latency-sensitive 

• Complex expressive application logic 

• Ship new code ASAP 

• > 1M reqs/sec



Batch Data Fetches

http://github.com/facebook/Haxl



Expressive I/O Batching
-- “naive” friendsOf
friendsOf :: Id -> [Id]

-- Haxl friendsOf
friendsOf :: Id -> Haxl [Id]

-- “naive” multi-fetch
map friendsOf [id1, id2, …]

-- Haxl multi-fetch
mapM friendsOf [id1, id2, …]
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Ship new code ASAP

• GHC runtime has a built-in linker 

• Needed to implement unloading 

• Run new code without restarting server



Haskell

• Latency-sensitive 

• Complex expressive application logic 

• Ship new code ASAP 

• > 1M reqs/sec

Haxl

Haxl

GHC Linker



Haskell

• Latency-sensitive 

• Complex expressive application logic 

• Ship new code ASAP 

• > 1M reqs/sec

Haxl

Haxl

?

GHC Linker
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Foreign Function Interface

Server (C++)

Data Sources (C++)

Client Code (Haskell)
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FFI 

Boundary



Foreign Function Interface

Server (C++)

Data Sources (C++)

Client Code (Haskell)

Haxl Framework (Haskell) C++ 
Exception



Foreign Function Interface

Exception handling can be tricky

* ripe place to make Haskell better



Foreign Function Interface 

foreign import ccall unsafe “countAardvarks”
  countAardvarks :: Int -> CString -> IO Int
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Foreign Function Interface 

foreign import ccall safe “countAardvarks”
  countAardvarks :: Int -> CString -> IO Int



Foreign Function Interface

For best performance, you need a 
balance of safe and unsafe calls



Allocation Limits



Allocation Limits

enable heavyweight 
request

fixed bug 
in limit



Allocation Limits

• Triggers AsyncException in thread 

• Easy in Haskell, very difficult in C++

setAllocationCounter :: Int64 -> IO ()
getAllocationCounter :: IO Int64

enableAllocationLimit :: IO ()
disableAllocationLimit :: IO ()



Allocation Limits

Limit resources per request, 
not just the runtime
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Semantic Differences

fxlsh> Round(0.5)
1

haxlsh> round 0.5
0



Semantic Differences

fxlsh> StrRegexReplace(“XXX”, “a*”, “b”)
“bXbXbXb”

haxlsh> substitute “XXX” “a*” “b”
“XXX”



Semantic Differences

fxlsh> Floor(inf)
-9223372036854775808

haxlsh> floor (1.0/0.0)
17976931348623159077293051907890247336179769
942306572734300811577326758055009…



Semantic Differences

One in a million happens all the time



Perf Difference

j <- parseJson “\\\\\\\\\\\\\\\\\\\\\…

http://www.serpentine.com/blog/2015/05/13/sometimes-the-old-ways-are-the-best/





Flip The Switch



Flip The Switch

switch to Haskell

* little white lie



It Works!



Spoils of Victory

GHC gave a 30% throughput increase



GC?



GC

• Fixed 1 bug that was around for years 

• Never a first-order problem itself 

• High GC times were allocation limit issues 

• Upstreamed multiple low-hanging fruit 
optimizations



Upstream

• Applicative-Do (GHC 8.0) 

• Allocation limits (GHC 7.10) 

• GC optimizations + bug fix 

• Linker functionality 

• GHCi improvements (REPL)



Developers



Developers

• Multi-day hands-on workshops 

• “Therapy” Facebook group 

• Rosetta stone from translator



Spoils of Victory

Dozens of Haskell developers writing 
production code daily



Brave New Haskell World



Haskell is ready for industry



Haxl Devs (Past + Present)
• Simon Marlow 

• Louis Brandy 

• Aaron Roth 

• Jon Purdy 

• Bartosz Nitka 

• Kubo Kovac

• Zejun Wu 

• Jake Lengyel 

• Katie Miller 

• Noam Zilberstein 

• Andrew Farmer 

• Mehmet Yatbaz



Questions?

Jon Coens 
Haskell Shepherd at Facebook 

@JonCoens 
http://github.com/facebook/Haxl


