
Erlang Solutions Ltd.

© 1999-2015 Erlang Solutions Ltd.

Synchronising Game
Components

Robert Virding
Principle Language Expert

at Erlang Solutions Ltd.

© 1999-2015 Erlang Solutions Ltd.

Overview

• The classic way

• A slightly improved classic way

• The scalability problem

• A way of solving the problem

• Messages and/or shared state

• A solution

• All is not rosy

2

© 1999-2015 Erlang Solutions Ltd.

The classic way

+Complete control over the system

+Complete control of state

+Complete control of timing

- Problems with execution time

- Does not naturally scale to parallel systems

3

Object 1

“Render”

Object N

“Input”

…

S
t
a
t
e

© 1999-2015 Erlang Solutions Ltd.

A slightly improved classic way

+Slightly better parallelism

+Complete control over the system

- Problems with execution time

- Only limited parallelism

4

A
I

G
U
I

P
h
y
s
i
c
s

Object 1

“Render”

Object N

“Input”

…

S
t
a
t
e

© 1999-2015 Erlang Solutions Ltd.

The scalability problem

+Scalable

- We have lost complete control over the system

- How do we synchronise?

- How do we communicate between the loops?

5

S
t
a
t
e

Object 1

“Render”

Object N

“Input”

…

Object 1

“Render”

Object N

“Input”

…

Object 1

“Render”

Object N

“Input”

… …

© 1999-2015 Erlang Solutions Ltd. 6

• Sharing mutable state does not scale

- Not feasible for central tables with state

- The more parallelism we have the worse it gets

• Need another way to communicate and
synchronise

- Messages

The scalability problem

© 1999-2015 Erlang Solutions Ltd.

Messages and/or shared state

• Synchronise with messages, share data (Go)

- Difficult to get right and not safe

• STM

- Doesn’t scale well with mutable data

- Can have memory locality problems

- GC

• Pure copying messages

7

© 1999-2015 Erlang Solutions Ltd.

A solution

• Go fully parallel

• Everything in processes

• Communicate/synchronise with messages

• Reduce all central state to a minimum

• This scales quite well

- The shared mutable state limits this

• Processes can be implemented in different
languages

- Interface is through messages

8

© 1999-2015 Erlang Solutions Ltd.

A solution: example

• Concurrent space ships

• Each an Erlang process

• All communication using messages

• Very limited shared state (which ships in a sector)

- Managed by a process accessed with messages

• Ship logic in Lua (and Erlang)

• “Devices” behave like processes

- Receive messages from input

- Send messages to control output

9

© 1999-2015 Erlang Solutions Ltd.

A solution: example

10

Ship

…

State

Output

Input

Input

Input

Ship

Ship

Ship

Ship

Ship

Ship

© 1999-2015 Erlang Solutions Ltd.

A solution: demo

• Start up the system

• Change ship code on the fly

• Show interacting ships

• Show ships programmed in different languages

11

© 1999-2015 Erlang Solutions Ltd.

A solution: demo

12

© 1999-2015 Erlang Solutions Ltd.

A solution: example code
local function move(x, y, dx, dy)
 local nx,ny,ndx,ndy = move_xy_bounce(x, y, dx, dy,
 universe.valid_x, universe.valid_y)
 -- Where we were and where we are now.
 local osx,osy = universe.sector(x, y)
 local nsx,nsy = universe.sector(nx, ny)
 if (osx ~= nsx or osy ~= nsy) then
 -- In new sector, move us to the right sector
 universe.rem_sector(x, y)
 universe.add_sector(nx, ny)
 -- and draw us
 display.set_ship(type, colour, nx, ny)
 end
 return nx,ny,ndx,ndy
end

13

© 1999-2015 Erlang Solutions Ltd.

A solution: example code

• Attack ships communication

• Output messages for video and sound

• Input messages for controlling ship

14

© 1999-2015 Erlang Solutions Ltd.

A solution: example code
local function zap_ships(osx, osy, nsx, nsy)
 local lsx,lsy,rsx,rsy = move_lr_sectors(osx, osy, nsx, nsy)
 local f = universe.get_sector(nsx, nsy)
 if (f and f ~= me) then -- Always zap ship in front
 ship.zap(f, power)
 end
 f = universe.get_sector(lsx, lsy) or
 universe.get_sector(rsx, rsy)
 if (f and f ~= me) then -- Zap ship either left or right
 ship.zap(f, power)
 end
end

15

© 1999-2015 Erlang Solutions Ltd.

All is not rosy

• Some traditionally standard things cause
problems

• Synchronous communication is a killer

- It blocks the caller

• Must be non-blocking

- Use asynchronous communication

16

© 1999-2015 Erlang Solutions Ltd.

All is not rosy: demo

17

© 1999-2015 Erlang Solutions Ltd.

!

!

The Erlang concurrency
model scales!

18

© 1999-2015 Erlang Solutions Ltd.

!

Thank you

!

!

robert.virding@erlang-solutions.com

@rvirding

19

mailto:robert.virding@erlang-solutions.com

