
What NOT to do with
Erlang

Chandru Mullaparthi - Principal Software Architect - bet365
(Presented at CodeMesh 2015)

About me

• Worked in the telecoms domain from 1995-2014

• Worked with Erlang since 1999

• Currently with bet365

About bet365
• Founded in 2000

• Located in Stoke-on-Trent, UK

• The largest online sports betting company

• Over 19 million customers

• One of the largest private companies in the UK

• Employs more than 2,000 people

• 2014-2015: Over £34 billion was staked

• Very technology focused company

Message passing

Selective receive

Selective receive
receive

 Pattern_1 -> Expr_1;

 Pattern_2 -> Expr_2;

 …

 Pattern_n -> Expr_n

end.

Selective receive
receive

 Pattern_1 -> Expr_1;

 Pattern_2 -> Expr_2;

 …

 Pattern_n -> Expr_n

end.

If incoming msg rate > speed
of execution of each msg,

queues build up

Do not allow large
message queues to build

up for any process

Problems with large
message queues

Problems with large
message queues

• Scanning messages in a mailbox can
become time consuming

Problems with large
message queues

• Scanning messages in a mailbox can
become time consuming

• Processes sending messages incur a
reduction count penalty

Suppress unnecessary messages

Suppress unnecessary messages

msg_handler() ->
 receive
 {in, From, Msg} ->
 spawn_link(?MODULE,
 worker,
 [self(), Msg]),
 msg_handler();
 {result, Result} ->
 send_result(From, Result);
 {'EXIT', Pid, normal} ->
 ok;
 {'EXIT', Pid, Err} ->
 error_handler(Err);
 end.

worker(Parent, Msg) ->
 Res = do_something(Msg),
 Parent ! Res.

Suppress unnecessary messages

msg_handler() ->
 receive
 {in, From, Msg} ->
 spawn_link(?MODULE,
 worker,
 [self(), Msg]),
 msg_handler();
 {result, Result} ->
 send_result(From, Result);
 {'EXIT', Pid, normal} ->
 ok;
 {'EXIT', Pid, Err} ->
 error_handler(Err);
 end.

worker(Parent, Msg) ->
 Res = do_something(Msg),
 Parent ! Res.

msg_handler() ->
 receive
 {in, From, Msg} ->
 spawn(?MODULE, worker,
 [From, Msg]),
 msg_handler()
 end.

worker(From, Msg) ->
 case catch do_something(Msg) of
 {'EXIT', Err} ->
 error_handler(Err);
 Result ->
 send_result(From, Result)
 end.

Beware of proc_lib:spawn

Beware of proc_lib:spawn

• Crashed processes produce crash reports

Beware of proc_lib:spawn

• Crashed processes produce crash reports

• Crash reports are sent to the error_logger

Beware of proc_lib:spawn

• Crashed processes produce crash reports

• Crash reports are sent to the error_logger

• error_logger is REALLY bad at handling high
volume of error reports

Use ETS as a message
queue

Use ETS as a message
queue

Producer

Producer

Producer

Use ETS as a message
queue

Producer

Producer

Producer

ETS table

Use ETS as a message
queue

Producer

Producer

Producer

ETS table Consumer

Use ETS as a message
queue

Producer

Producer

Producer

ETS table Consumer

Only to absorb temporary
spikes

Overload control

Built-in overload control
• See http://www.erlang.org/doc/man/

overload.html

• Problematic because its a gen_server
implementation

• Extra message passing

• Caters for ‘global load’ only - not interface
specific load

http://www.erlang.org/doc/man/overload.html

Overload control - example
-module(nps).
-export([init/1, handle_request/1]).

-record(nps_state, {max_per_sec, timestamp, cur_vol = 0}).

init(Max_per_sec) ->
 #nps_state{max_per_sec = Max_per_sec,
 timestamp = timestamp()}.

timestamp() ->
 erlang:monotonic_time(seconds).

handle_request(
 #nps_state{cur_vol = C,
 timestamp = Prev_time,
 max_per_sec = Max_per_sec} = State) ->
 Cur_time = timestamp(),
 case Prev_time < Cur_time of
 true ->
 {allow, State#nps_state{cur_vol = 1, timestamp = Cur_time}};
 false when C >= Max_per_sec ->
 {deny, State};
 false ->
 {allow, State#nps_state{cur_vol = C + 1}}
 end.

Overload control - test
-module(nps_test).
-export([go/2]).

go(Max_per_sec, Num_iterations) ->
 State = nps:init(Max_per_sec),
 go(Max_per_sec, Num_iterations, 1, [], State).

go(_Max_per_sec, 0, _Req_id, Acc, _State) ->
 lists:reverse(Acc);
go(Max_per_sec, N, Req_id, Acc, State) ->
 {Verdict, State_1} = nps:handle_request(State),
 go(Max_per_sec, N - 1, Req_id + 1, [{Req_id, Verdict} | Acc], State_1).

6> nps_test:go(10, 15).
[{1,allow}, {2,allow},
 {3,allow}, {4,allow},
 {5,allow}, {6,allow},
 {7,allow}, {8,allow},
 {9,allow}, {10,allow},
 {11,deny}, {12,deny},
 {13,deny}, {14,deny},
 {15,deny}]

Native RPC

Naming and Discovery
a@host_1 epmd@host_2

TCP CONNECT host_2:22200

TCP host_2:4369: where is node ‘a’ ?

node ‘a’ is listening on port 22200

TCP CONNECT host_2:4369

a@host_2

Check cookie

TCP CONNECT localhost:4369

node ‘a’ is on 22200

Connection accepted. Exchange connected node list

Native RPC - internals

Limitations of native RPC

• No overload control on the server side

• ‘rex’ is a message queue hotspot

• Inefficient implementation

• Head-of-line blocking problem, potentially
delaying net_kernel heartbeats

A more efficient RPC

Advantages of proposed
mechanism

• Possible to introduce overload control

• Can use a different transport protocol (e.g.
SCTP)

• Clean load balancing and failure handling

• Use multiple connections

• Workaround head-of-line blocking problem

Long-lived stateful
processes

• Harder to implement correctly

• Garbage collection issues

• More effort required to get correct supervision
strategy

Mnesia

Mnesia

• Built-in KV store

• Supports ACID transactions

• Supports real-time replication of tables

Mnesia - table types

• 3 types of tables

• ram_copies

• disc_copies

• disc_only_copies

Mnesia - table management

• Data in a table is stored in a <Table>.DCD file

• All modifications to persistent tables are written
to LATEST.log

• ‘Occasionally’, contents of LATEST.log are
written to <Table>.DCL files

• ‘Occasionally’, contents of <Table>.DCL are
dumped to <Table>.DCD

Mnesia - problems

• Table management on disk leads to Mnesia
overload for write-heavy applications

• Net-splits are resolved by restarting nodes (data
loss)

Mnesia - where it worked

Mnesia - where it worked

DB node DB node

DB-IF
node

DB-IF
node

DB-IF
node

Mnesia - where it worked

DB node DB node

DB-IF
node

DB-IF
node

DB-IF
node

Read-heavy

Mnesia - where it didn’t work

Mnesia - where it didn’t work

DB node DB node

Core
node

Core
node

Core
node

Protocol
i/f node

Protocol
i/f node

Protocol
i/f node

Mnesia - where it didn’t work

DB node DB node

Core
node

Core
node

Core
node

Protocol
i/f node

Protocol
i/f node

Protocol
i/f node

Write-heavy
Read-heavy

Don’t use Mnesia in a replicated write-heavy
use case

Don’t use Mnesia in a replicated write-heavy
use case

Replicated read-heavy is OK

Don’t use Mnesia in a replicated write-heavy
use case

Replicated read-heavy is OK

Standalone write-heavy is OK

Hot code loading

Hot code loading -
considerations

Hot code loading -
considerations

• Process state management

Hot code loading -
considerations

• Process state management

• Installation & Rollback

Hot code loading -
considerations

• Process state management

• Installation & Rollback

• Traceability

Don’t use hot code loading to
patch your systems unless you

have automated installation
and rollback scripts

TCP sockets

TCP sockets
• Do NOT use {active, true} mode on sockets in

production

TCP sockets
• Do NOT use {active, true} mode on sockets in

production

• {active, once} is safest

TCP sockets
• Do NOT use {active, true} mode on sockets in

production
A spinlock is acquired in the Linux

kernel for every read

• {active, once} is safest

TCP sockets
• Do NOT use {active, true} mode on sockets in

production
A spinlock is acquired in the Linux

kernel for every read

• {active, once} is safest

• {active, N} seems to yield the highest performance

Overall system design

• Make each Erlang node as independent as
possible

• Each node should be a independent unit of
computation

Design guidelines

Bad design - example

Bad design - example

node 1 node N

Data feeds

node 2 …

Bet feed

Bad design - example

node 1 node N

Data feeds

node 2 …

Bet feed

A
distributed
monolithic

system

A better way

node 1 node N

Data feeds

node 2 …

Bet feed

Distributor

Load balancer

Recap

Recap
• Prefer lots of short lived stateless processes over a few long

lived ones

Recap
• Prefer lots of short lived stateless processes over a few long

lived ones

• Beware of message queue build up

Recap
• Prefer lots of short lived stateless processes over a few long

lived ones

• Beware of message queue build up

• Beware of native RPC limitations

Recap
• Prefer lots of short lived stateless processes over a few long

lived ones

• Beware of message queue build up

• Beware of native RPC limitations

• Mnesia is awesome (for certain use cases)

Recap
• Prefer lots of short lived stateless processes over a few long

lived ones

• Beware of message queue build up

• Beware of native RPC limitations

• Mnesia is awesome (for certain use cases)

• {active, N} works best for TCP sockets

Recap
• Prefer lots of short lived stateless processes over a few long

lived ones

• Beware of message queue build up

• Beware of native RPC limitations

• Mnesia is awesome (for certain use cases)

• {active, N} works best for TCP sockets

• Overload control is not optional

Recap
• Prefer lots of short lived stateless processes over a few long

lived ones

• Beware of message queue build up

• Beware of native RPC limitations

• Mnesia is awesome (for certain use cases)

• {active, N} works best for TCP sockets

• Overload control is not optional

• Pay attention to overall system design

Open source at bet365

Open source at bet365
• Better ODBC support

Open source at bet365
• Better ODBC support

• A proper SOAP implementation in Erlang

Open source at bet365
• Better ODBC support

• A proper SOAP implementation in Erlang

• Assisting Ericsson to develop a package
manager for Erlang

Acknowledgements

Source code highlighting: ‘Highlight’ courtesy of Andre Simon
http://www.andre-simon.de/dokuwiki/doku.php

http://www.andre-simon.de/dokuwiki/doku.php

