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About me

• Worked in the telecoms domain from 1995-2014 

• Worked with Erlang since 1999 

• Currently with bet365



About bet365
• Founded in 2000 

• Located in Stoke-on-Trent, UK 

• The largest online sports betting company 

• Over 19 million customers 

• One of the largest private companies in the UK 

• Employs more than 2,000 people 

• 2014-2015: Over £34 billion was staked 

• Very technology focused company



Message passing
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Selective receive
receive 

 Pattern_1 -> Expr_1; 

 Pattern_2 -> Expr_2; 

     … 

 Pattern_n -> Expr_n 

end. 
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 Pattern_1 -> Expr_1; 

 Pattern_2 -> Expr_2; 

     … 

 Pattern_n -> Expr_n 

end. 

If incoming msg rate > speed 
of execution of each msg, 

queues build up



Do not allow large 
message queues to build 

up for any process
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Problems with large 
message queues

• Scanning messages in a mailbox can 
become time consuming

• Processes sending messages incur a 
reduction count penalty
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Suppress unnecessary messages

msg_handler() -> 
    receive 
        {in, From, Msg} -> 
            spawn_link(?MODULE, 
                       worker, 
                      [self(), Msg]), 
            msg_handler(); 
        {result, Result} -> 
            send_result(From, Result); 
        {'EXIT', Pid, normal} -> 
            ok; 
        {'EXIT', Pid, Err} -> 
            error_handler(Err); 
    end. 

worker(Parent, Msg) -> 
    Res = do_something(Msg), 
    Parent ! Res.



Suppress unnecessary messages

msg_handler() -> 
    receive 
        {in, From, Msg} -> 
            spawn_link(?MODULE, 
                       worker, 
                      [self(), Msg]), 
            msg_handler(); 
        {result, Result} -> 
            send_result(From, Result); 
        {'EXIT', Pid, normal} -> 
            ok; 
        {'EXIT', Pid, Err} -> 
            error_handler(Err); 
    end. 

worker(Parent, Msg) -> 
    Res = do_something(Msg), 
    Parent ! Res.

msg_handler() -> 
    receive 
        {in, From, Msg} -> 
            spawn(?MODULE, worker, 
                  [From, Msg]), 
            msg_handler() 
    end. 

worker(From, Msg) -> 
    case catch do_something(Msg) of 
        {'EXIT', Err} -> 
            error_handler(Err); 
        Result -> 
            send_result(From, Result) 
    end.
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Beware of proc_lib:spawn

• Crashed processes produce crash reports

• Crash reports are sent to the error_logger

• error_logger is REALLY bad at handling high 
volume of error reports
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Use ETS as a message 
queue

Producer

Producer

Producer

ETS table Consumer

Only to absorb temporary 
spikes



Overload control



Built-in overload control
• See http://www.erlang.org/doc/man/

overload.html 

• Problematic because its a gen_server 
implementation  

• Extra message passing 

• Caters for ‘global load’ only - not interface 
specific load

http://www.erlang.org/doc/man/overload.html


Overload control - example
-module(nps). 
-export([init/1, handle_request/1]). 

-record(nps_state, {max_per_sec, timestamp, cur_vol = 0}). 

init(Max_per_sec) -> 
    #nps_state{max_per_sec = Max_per_sec,  
               timestamp   = timestamp()}. 

timestamp() -> 
    erlang:monotonic_time(seconds). 

handle_request( 
  #nps_state{cur_vol       = C, 
             timestamp     = Prev_time, 
             max_per_sec   = Max_per_sec} = State) -> 
    Cur_time = timestamp(), 
    case Prev_time < Cur_time of 
        true -> 
            {allow, State#nps_state{cur_vol = 1, timestamp = Cur_time}}; 
        false when C >= Max_per_sec -> 
            {deny, State}; 
        false -> 
            {allow, State#nps_state{cur_vol = C + 1}} 
    end.



Overload control - test
-module(nps_test). 
-export([go/2]). 

go(Max_per_sec, Num_iterations) -> 
    State = nps:init(Max_per_sec), 
    go(Max_per_sec, Num_iterations, 1, [], State). 

go(_Max_per_sec, 0, _Req_id, Acc, _State) -> 
    lists:reverse(Acc); 
go(Max_per_sec, N, Req_id, Acc, State) -> 
    {Verdict, State_1} = nps:handle_request(State), 
    go(Max_per_sec, N - 1, Req_id + 1, [{Req_id, Verdict} | Acc], State_1).

6> nps_test:go(10, 15). 
[{1,allow}, {2,allow}, 
 {3,allow}, {4,allow}, 
 {5,allow}, {6,allow}, 
 {7,allow}, {8,allow}, 
 {9,allow}, {10,allow}, 
 {11,deny}, {12,deny}, 
 {13,deny}, {14,deny}, 
 {15,deny}] 



Native RPC



Naming and Discovery
a@host_1 epmd@host_2

TCP CONNECT host_2:22200

TCP host_2:4369: where is node ‘a’ ?

node ‘a’ is listening on port 22200 

TCP CONNECT host_2:4369

a@host_2

Check cookie

TCP CONNECT localhost:4369

node ‘a’ is on 22200

Connection accepted. Exchange connected node list



Native RPC - internals



Limitations of native RPC

• No overload control on the server side 

• ‘rex’ is a message queue hotspot 

• Inefficient implementation 

• Head-of-line blocking problem, potentially 
delaying net_kernel heartbeats



A more efficient RPC



Advantages of proposed 
mechanism

• Possible to introduce overload control 

• Can use a different transport protocol (e.g. 
SCTP) 

• Clean load balancing and failure handling 

• Use multiple connections 

• Workaround head-of-line blocking problem



Long-lived stateful 
processes

• Harder to implement correctly 

• Garbage collection issues 

• More effort required to get correct supervision 
strategy



Mnesia



Mnesia

• Built-in KV store 

• Supports ACID transactions 

• Supports real-time replication of tables



Mnesia - table types

• 3 types of tables 

• ram_copies 

• disc_copies 

• disc_only_copies



Mnesia - table management

• Data in a table is stored in a <Table>.DCD file 

• All modifications to persistent tables are written 
to LATEST.log 

• ‘Occasionally’, contents of LATEST.log are 
written to <Table>.DCL files 

• ‘Occasionally’, contents of <Table>.DCL are 
dumped to <Table>.DCD



Mnesia - problems

• Table management on disk leads to Mnesia 
overload for write-heavy applications 

• Net-splits are resolved by restarting nodes (data 
loss)
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Mnesia - where it didn’t work

DB node DB node

Core 
node

Core 
node

Core 
node

Protocol 
i/f node

Protocol 
i/f node

Protocol 
i/f node

Write-heavy 
Read-heavy
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Don’t use Mnesia in a replicated write-heavy 
use case

Replicated read-heavy is OK

Standalone write-heavy is OK



Hot code loading
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Hot code loading - 
considerations

• Process state management

• Installation & Rollback

• Traceability



Don’t use hot code loading to 
patch your systems unless you 

have automated installation 
and rollback scripts
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TCP sockets
• Do NOT use {active, true} mode on sockets in 

production
A spinlock is acquired in the Linux 

kernel for every read

• {active, once} is safest

• {active, N} seems to yield the highest performance



Overall system design



• Make each Erlang node as independent as 
possible 

• Each node should be a independent unit of 
computation

Design guidelines
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Bad design - example

node 1 node N

Data feeds

node 2 …

Bet feed



Bad design - example

node 1 node N

Data feeds

node 2 …

Bet feed

A 
distributed 
monolithic 

system



A better way

node 1 node N

Data feeds

node 2 …

Bet feed

Distributor

Load balancer
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Recap
• Prefer lots of short lived stateless processes over a few long 

lived ones

• Beware of message queue build up

• Beware of native RPC limitations

• Mnesia is awesome (for certain use cases)

• {active, N} works best for TCP sockets

• Overload control is not optional 

• Pay attention to overall system design
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Open source at bet365
• Better ODBC support

• A proper SOAP implementation in Erlang

• Assisting Ericsson to develop a package 
manager for Erlang
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